Estimating Aggregates over Multiple Sets

E. Cohen, Haim Kaplan
{"title":"Estimating Aggregates over Multiple Sets","authors":"E. Cohen, Haim Kaplan","doi":"10.1109/ICDM.2008.110","DOIUrl":null,"url":null,"abstract":"Many datasets, including market basket data, text or hypertext documents, and measurement data collected in different nodes or time periods, are modeled as a collection of sets over a ground set of (weighted) items. We consider the problem of estimating basic aggregates such as the weight or selectivity of a subpopulation of the items. We extend classic summarization techniques based on sampling to this scenario when we have multiple sets and selection predicates based on membership in particular sets.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Many datasets, including market basket data, text or hypertext documents, and measurement data collected in different nodes or time periods, are modeled as a collection of sets over a ground set of (weighted) items. We consider the problem of estimating basic aggregates such as the weight or selectivity of a subpopulation of the items. We extend classic summarization techniques based on sampling to this scenario when we have multiple sets and selection predicates based on membership in particular sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计多个集合上的聚合
许多数据集,包括市场购物篮数据、文本或超文本文档,以及在不同节点或时间段收集的度量数据,都被建模为一组(加权)项目上的集合。我们考虑估计基本聚合的问题,如项目的一个亚群的权重或选择性。当我们有多个集合和基于特定集合的隶属关系的选择谓词时,我们将基于抽样的经典摘要技术扩展到这个场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1