Proposal distribution for particle filtering applied to terrain navigation

Achille Murangira, C. Musso
{"title":"Proposal distribution for particle filtering applied to terrain navigation","authors":"Achille Murangira, C. Musso","doi":"10.5281/ZENODO.43715","DOIUrl":null,"url":null,"abstract":"This article provides a methodology for designing a proposal distribution in the context of particle filtering for terrain navigation. The suggested method is based on the use of an importance distribution centered around an estimate of the maximum a posteriori (MAP). By assuming a Gaussian prior, we show that the computation of the MAP can be reduced to an optimization problem in a space of lower state dimension. Furthermore, we introduce a new method for choosing the covariance of the proposal. In this case, numerical experiments show that the method can improve upon classical sampling methods.","PeriodicalId":400766,"journal":{"name":"21st European Signal Processing Conference (EUSIPCO 2013)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st European Signal Processing Conference (EUSIPCO 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This article provides a methodology for designing a proposal distribution in the context of particle filtering for terrain navigation. The suggested method is based on the use of an importance distribution centered around an estimate of the maximum a posteriori (MAP). By assuming a Gaussian prior, we show that the computation of the MAP can be reduced to an optimization problem in a space of lower state dimension. Furthermore, we introduce a new method for choosing the covariance of the proposal. In this case, numerical experiments show that the method can improve upon classical sampling methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
地形导航中粒子滤波的建议分布
本文提出了一种基于粒子滤波的地形导航建议分布设计方法。建议的方法是基于以最大后验估计(MAP)为中心的重要性分布的使用。通过假设高斯先验,我们证明MAP的计算可以简化为低状态维空间中的优化问题。此外,我们还引入了一种新的方法来选择提案的协方差。在这种情况下,数值实验表明,该方法可以改进经典的采样方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Iterative algorithms for unbiased FIR state estimation in discrete time Detection of clipping in coded speech signals Primary emitter localization using smartly initialized Metropolis-Hastings algorithm Online multi-speaker tracking using multiple microphone arrays informed by auditory scene analysis Fast diffraction-pattern matching for object detection and recognition in digital holograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1