Classification model for predicting inflammation of the urinary bladder and acute nephritis of the renal pelvis

Chanin Lochotinunt, Suejit Pechprasarn, T. Treebupachatsakul
{"title":"Classification model for predicting inflammation of the urinary bladder and acute nephritis of the renal pelvis","authors":"Chanin Lochotinunt, Suejit Pechprasarn, T. Treebupachatsakul","doi":"10.1109/BMEiCON56653.2022.10012109","DOIUrl":null,"url":null,"abstract":"Urinary tract diseases can occur in many organs of the urinary system, such as kidneys, urinary bladder, renal pelvis, ureters, and urethra. The most common disease in the urinary system is bladder inflammation, cystitis, and acute nephritis. In this research, the classification artificial intelligent model is applied to predict 2 symptoms of inflammation of the urinary bladder and acute nephritis of the renal pelvis from 6 parameters, including body temperature of patient, nausea, lumbar pain, urinary pushing, micturition pains, and burning of the urethra. Here, the principal components analysis or PCA are also applied to identify the critical parameters employed to train the machine learning model. Here, we propose to compare several machine learning classification models and show the proper model accurately diagnosing these two symptoms.","PeriodicalId":177401,"journal":{"name":"2022 14th Biomedical Engineering International Conference (BMEiCON)","volume":"444 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th Biomedical Engineering International Conference (BMEiCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEiCON56653.2022.10012109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Urinary tract diseases can occur in many organs of the urinary system, such as kidneys, urinary bladder, renal pelvis, ureters, and urethra. The most common disease in the urinary system is bladder inflammation, cystitis, and acute nephritis. In this research, the classification artificial intelligent model is applied to predict 2 symptoms of inflammation of the urinary bladder and acute nephritis of the renal pelvis from 6 parameters, including body temperature of patient, nausea, lumbar pain, urinary pushing, micturition pains, and burning of the urethra. Here, the principal components analysis or PCA are also applied to identify the critical parameters employed to train the machine learning model. Here, we propose to compare several machine learning classification models and show the proper model accurately diagnosing these two symptoms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测膀胱炎症和急性肾盂肾炎的分类模型
泌尿系统疾病可发生在泌尿系统的许多器官,如肾脏、膀胱、肾盂、输尿管和尿道。泌尿系统最常见的疾病是膀胱炎症、膀胱炎和急性肾炎。本研究应用分类人工智能模型从患者体温、恶心、腰痛、尿推、排尿痛、尿道灼烧6个参数预测膀胱炎症和急性肾盂肾炎2种症状。这里,主成分分析或PCA也被用于识别用于训练机器学习模型的关键参数。在这里,我们建议比较几种机器学习分类模型,并展示准确诊断这两种症状的合适模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Depressive states in healthy individuals lead to biased processing on frontal-parietal ERPs The effect of visual cognition on the fear caused by pain recall A Prussian Blue Modified Electrode Based Amperometric Sensor for Lactate Determination On the generalized inverse for MRI reconstruction Preliminary Study of the Relationship Between Age and Gender using Sounds Generated from the Nostrils and Pharynx During Swallowing in Healthy Subjects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1