The Cover Source Mismatch Problem in Deep-Learning Steganalysis

Quentin Giboulot, Patrick Bas, R. Cogranne, Dirk Borghys
{"title":"The Cover Source Mismatch Problem in Deep-Learning Steganalysis","authors":"Quentin Giboulot, Patrick Bas, R. Cogranne, Dirk Borghys","doi":"10.23919/eusipco55093.2022.9909553","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of Cover Source Mismatch (CSM) in steganalysis, i.e. the impact of a testing set which does not originate from the same source than the training set. In this study, the trained steganalyzer uses state of the art deep-learning architecture prone to better generalization than feature-based steganalysis. Different sources such as the sensor model, the ISO sensitivity, the processing pipeline and the content, are investigated. Our conclusions are that, on one hand, deep learning steganalysis is still very sensitive to the CSM, on the other hand, the holistic strategy leverages the good generalization properties of deep learning to reduce the CSM with a relatively small number of training samples.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper studies the problem of Cover Source Mismatch (CSM) in steganalysis, i.e. the impact of a testing set which does not originate from the same source than the training set. In this study, the trained steganalyzer uses state of the art deep-learning architecture prone to better generalization than feature-based steganalysis. Different sources such as the sensor model, the ISO sensitivity, the processing pipeline and the content, are investigated. Our conclusions are that, on one hand, deep learning steganalysis is still very sensitive to the CSM, on the other hand, the holistic strategy leverages the good generalization properties of deep learning to reduce the CSM with a relatively small number of training samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
深度学习隐写分析中的覆盖源不匹配问题
本文研究了隐写分析中的覆盖源不匹配问题,即测试集与训练集的来源不同所产生的影响。在本研究中,经过训练的隐写分析器使用最先进的深度学习架构,比基于特征的隐写分析更容易泛化。不同的来源,如传感器的型号,ISO灵敏度,处理流程和内容,进行了研究。我们的结论是,一方面,深度学习隐写分析对CSM仍然非常敏感,另一方面,整体策略利用深度学习良好的泛化特性,在训练样本数量相对较少的情况下减少CSM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1