Wasserstein Generative Adversarial Networks for Online Test Generation for Cyber Physical Systems

J. Peltomäki, Frankie Spencer, Ivan Porres
{"title":"Wasserstein Generative Adversarial Networks for Online Test Generation for Cyber Physical Systems","authors":"J. Peltomäki, Frankie Spencer, Ivan Porres","doi":"10.1145/3526072.3527522","DOIUrl":null,"url":null,"abstract":"We propose a novel online test generation algorithm WOGAN based on Wasserstein Generative Adversarial Networks. WOGAN is a general-purpose black-box test generator applicable to any system under test having a fitness function for determining failing tests. As a proof of concept, we evaluate WOGAN by generating roads such that a lane assistance system of a car fails to stay on the designated lane. We find that our algorithm has a competitive performance respect to previously published algorithms.","PeriodicalId":206275,"journal":{"name":"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 15th International Workshop on Search-Based Software Testing (SBST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3526072.3527522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel online test generation algorithm WOGAN based on Wasserstein Generative Adversarial Networks. WOGAN is a general-purpose black-box test generator applicable to any system under test having a fitness function for determining failing tests. As a proof of concept, we evaluate WOGAN by generating roads such that a lane assistance system of a car fails to stay on the designated lane. We find that our algorithm has a competitive performance respect to previously published algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wasserstein网络物理系统在线测试生成生成对抗网络
提出了一种基于沃瑟斯坦生成对抗网络的在线测试生成算法WOGAN。WOGAN是一个通用的黑盒测试生成器,适用于任何被测系统,具有确定失败测试的适应度函数。作为概念验证,我们通过生成车道辅助系统无法在指定车道上行驶的道路来评估WOGAN。我们发现我们的算法与之前发布的算法相比具有竞争力的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kex at the 2022 SBST Tool Competition A Comparative Evaluation on the Quality of Manual and Automatic Test Case Generation Techniques for Scientific Software - a Case Study of a Python Project for Material Science Workflows Towards Run-Time Search for Real-World Multi-Agent Systems EvoMBT at the SBST 2022 Tool Competition UTBot Java at the SBST2022 Tool Competition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1