Time- and Space-optimal Algorithm for the Many-visits TSP

André Berger, László Kozma, Matthias Mnich, Roland Vincze
{"title":"Time- and Space-optimal Algorithm for the Many-visits TSP","authors":"André Berger, László Kozma, Matthias Mnich, Roland Vincze","doi":"10.1145/3382038","DOIUrl":null,"url":null,"abstract":"The many-visits traveling salesperson problem (MV-TSP) asks for an optimal tour of n cities that visits each city c a prescribed number kc of times. Travel costs may be asymmetric, and visiting a city twice in a row may incur a non-zero cost. The MV-TSP problem finds applications in scheduling, geometric approximation, and Hamiltonicity of certain graph families. The fastest known algorithm for MV-TSP is due to Cosmadakis and Papadimitriou (SICOMP, 1984). It runs in time nO(n) + O(n3 log ∑ c kc) and requires nᶿ(n) space. An interesting feature of the Cosmadakis-Papadimitriou algorithm is its logarithmic dependence on the total length ∑ckc of the tour, allowing the algorithm to handle instances with very long tours. The superexponential dependence on the number of cities in both the time and space complexity, however, renders the algorithm impractical for all but the narrowest range of this parameter. In this article, we improve upon the Cosmadakis-Papadimitriou algorithm, giving an MV-TSP algorithm that runs in time 2O(n), i.e., single-exponential in the number of cities, using polynomial space. The space requirement of our algorithm is (essentially) the size of the output, and assuming the Exponential-Time Hypothesis (ETH), the problem cannot be solved in time 2o(n). Our algorithm is deterministic, and arguably both simpler and easier to analyze than the original approach of Cosmadakis and Papadimitriou. It involves an optimization over directed spanning trees and a recursive, centroid-based decomposition of trees.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"358 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3382038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The many-visits traveling salesperson problem (MV-TSP) asks for an optimal tour of n cities that visits each city c a prescribed number kc of times. Travel costs may be asymmetric, and visiting a city twice in a row may incur a non-zero cost. The MV-TSP problem finds applications in scheduling, geometric approximation, and Hamiltonicity of certain graph families. The fastest known algorithm for MV-TSP is due to Cosmadakis and Papadimitriou (SICOMP, 1984). It runs in time nO(n) + O(n3 log ∑ c kc) and requires nᶿ(n) space. An interesting feature of the Cosmadakis-Papadimitriou algorithm is its logarithmic dependence on the total length ∑ckc of the tour, allowing the algorithm to handle instances with very long tours. The superexponential dependence on the number of cities in both the time and space complexity, however, renders the algorithm impractical for all but the narrowest range of this parameter. In this article, we improve upon the Cosmadakis-Papadimitriou algorithm, giving an MV-TSP algorithm that runs in time 2O(n), i.e., single-exponential in the number of cities, using polynomial space. The space requirement of our algorithm is (essentially) the size of the output, and assuming the Exponential-Time Hypothesis (ETH), the problem cannot be solved in time 2o(n). Our algorithm is deterministic, and arguably both simpler and easier to analyze than the original approach of Cosmadakis and Papadimitriou. It involves an optimization over directed spanning trees and a recursive, centroid-based decomposition of trees.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多访问TSP的时间和空间最优算法
多次访问旅行销售人员问题(MV-TSP)要求在n个城市中进行最优旅行,每个城市访问指定次数kc次。旅行成本可能是不对称的,连续两次访问一个城市可能会产生非零成本。MV-TSP问题在某些图族的调度、几何逼近和哈密性等方面得到了应用。已知最快的MV-TSP算法是由于Cosmadakis和Papadimitriou (SICOMP, 1984)。它的运行时间为nO(n) + O(n3 log∑c kc),需要nᶿ(n)空间。Cosmadakis-Papadimitriou算法的一个有趣的特征是它对巡回总长度∑ckc的对数依赖,允许算法处理具有很长巡回的实例。然而,在时间和空间复杂度上对城市数量的超指数依赖使得该算法除了对该参数的最窄范围外,对所有参数都不适用。在本文中,我们改进了Cosmadakis-Papadimitriou算法,给出了一个运行时间为20 (n)的pv - tsp算法,即在城市数量上的单指数,使用多项式空间。我们算法的空间需求(本质上)是输出的大小,并且假设指数时间假设(ETH),该问题无法在时间20 (n)内解决。我们的算法是确定性的,可以说比Cosmadakis和Papadimitriou的原始方法更简单,更容易分析。它涉及有向生成树的优化和基于质心的树的递归分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1