Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU

Shweta Sharma, C. Krishna, Rakesh Kumar
{"title":"Android Ransomware Detection using Machine Learning Techniques: A Comparative Analysis on GPU and CPU","authors":"Shweta Sharma, C. Krishna, Rakesh Kumar","doi":"10.1109/ACIT50332.2020.9300108","DOIUrl":null,"url":null,"abstract":"Cyber-criminals perform ransomware attacks to make money from victims by harming their devices. The attacks are rapidly increasing on Android-based smartphones due to its vast usage world-wide. In this paper, a framework has been proposed in which we (1) utilize novel features of Android ransomware, (2) employ machine learning models to classify ransomware and benign apps, and (3) perform a comparative analysis to calculate the computational time required by machine learning models to detect Android ransomware. Our proposed framework can efficiently detect both locker and crypto ransomware. The experimental results show that the proposed framework detects Android ransomware by achieving an accuracy of 99.59% with Logistic Regression in 177 milliseconds and 235 milliseconds on the Graphics Processing Unit (GPU) and Central Processing Unit (CPU) respectively.","PeriodicalId":193891,"journal":{"name":"2020 21st International Arab Conference on Information Technology (ACIT)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 21st International Arab Conference on Information Technology (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT50332.2020.9300108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Cyber-criminals perform ransomware attacks to make money from victims by harming their devices. The attacks are rapidly increasing on Android-based smartphones due to its vast usage world-wide. In this paper, a framework has been proposed in which we (1) utilize novel features of Android ransomware, (2) employ machine learning models to classify ransomware and benign apps, and (3) perform a comparative analysis to calculate the computational time required by machine learning models to detect Android ransomware. Our proposed framework can efficiently detect both locker and crypto ransomware. The experimental results show that the proposed framework detects Android ransomware by achieving an accuracy of 99.59% with Logistic Regression in 177 milliseconds and 235 milliseconds on the Graphics Processing Unit (GPU) and Central Processing Unit (CPU) respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习技术的Android勒索软件检测:GPU和CPU的对比分析
网络犯罪分子通过勒索软件攻击,通过破坏受害者的设备从受害者身上赚钱。由于android智能手机在全球范围内的广泛使用,针对它的攻击正在迅速增加。本文提出了一个框架,其中我们(1)利用Android勒索软件的新特征,(2)使用机器学习模型对勒索软件和良性应用进行分类,(3)进行比较分析,计算机器学习模型检测Android勒索软件所需的计算时间。我们提出的框架可以有效地检测储物柜和加密勒索软件。实验结果表明,该框架在图形处理器(GPU)和中央处理器(CPU)上分别在177毫秒和235毫秒的时间内实现了99.59%的准确率检测Android勒索软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wireless Sensor Network MAC Energy - efficiency Protocols: A Survey Keystroke Identifier Using Fuzzy Logic to Increase Password Security A seq2seq Neural Network based Conversational Agent for Gulf Arabic Dialect Machine Learning and Soft Robotics Studying and Analyzing the Fog-based Internet of Robotic Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1