Automated Change Request Triage Using Alpha Frequency Matrix

Sana Nasim, Saad Razzaq, Javed Ferzund
{"title":"Automated Change Request Triage Using Alpha Frequency Matrix","authors":"Sana Nasim, Saad Razzaq, Javed Ferzund","doi":"10.1109/FIT.2011.62","DOIUrl":null,"url":null,"abstract":"Software changes are inevitable in large and long lived projects. Successful applications require proper handling and assignment of change requests (CRs). In large projects, a number of CRs are generated daily. These CRs should be resolved timely. We present an automated approach to assign CRs to appropriate developers. We use Alphabet Frequency Matrix (AFM) to classify CRs into developer classes. We apply machine learning techniques on the AFM data sets for classification. We find that AFM can be used to achieve an average accuracy from 27% to 53% with precision 25% to 55% and recall 28% to 56%.","PeriodicalId":101923,"journal":{"name":"2011 Frontiers of Information Technology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Frontiers of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FIT.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Software changes are inevitable in large and long lived projects. Successful applications require proper handling and assignment of change requests (CRs). In large projects, a number of CRs are generated daily. These CRs should be resolved timely. We present an automated approach to assign CRs to appropriate developers. We use Alphabet Frequency Matrix (AFM) to classify CRs into developer classes. We apply machine learning techniques on the AFM data sets for classification. We find that AFM can be used to achieve an average accuracy from 27% to 53% with precision 25% to 55% and recall 28% to 56%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用Alpha频率矩阵的自动变更请求分类
在大型和长期项目中,软件更改是不可避免的。成功的应用程序需要正确处理和分配变更请求(cr)。在大型项目中,每天都会生成许多cr。这些问题应及时解决。我们提出了一种自动的方法来将cr分配给合适的开发人员。我们使用字母表频率矩阵(AFM)将cr划分为开发人员类别。我们将机器学习技术应用于AFM数据集进行分类。我们发现AFM可以实现27%到53%的平均准确率,精密度为25%到55%,召回率为28%到56%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantifying Non-functional Requirements in Service Oriented Development Secure Solution to Data Transfer from Sensor Node to Sink against Aggregator Compromises Development of an Optical Sensor for the Detection of Volatile Organic Compounds Network Performance Optimization: A Case Study of Enterprise Network Simulated in OPNET Fully Distributed Cooperative Spectrum Sensing for Cognitive Radio Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1