{"title":"Interference analysis for spatial reused cooperative multihop wireless networks","authors":"B. Maham, W. Saad, M. Debbah, Zhu Han","doi":"10.1109/PIMRC.2013.6666133","DOIUrl":null,"url":null,"abstract":"We consider a decode-and-forward based wireless multihop network with a single source node, a single destination node, and N intermediate nodes. To increase the spectral efficiency and energy efficiency of the system, we propose a cooperative multihop communication with spatial reuse, in which interference is treated as noise. The performance of spatial-reused space-time coded cooperative multihop network is analyzed over Rayleigh fading channels. More specifically, the exact closed-form expression for the outage probability at the nth receiving node is derived when there are multiple interferences over non-i.i.d. Rayleigh fading channels. In addition, we propose a simple power control scheme which is only dependent on the statistical knowledge of channels. Finally, the analytic results were confirmed by simulations. It is shown by simulations that the spatial-reused multihop transmission outperforms the interference-free multihop transmission in terms of energy efficiency in low and medium SNR scenarios.","PeriodicalId":210993,"journal":{"name":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIMRC.2013.6666133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We consider a decode-and-forward based wireless multihop network with a single source node, a single destination node, and N intermediate nodes. To increase the spectral efficiency and energy efficiency of the system, we propose a cooperative multihop communication with spatial reuse, in which interference is treated as noise. The performance of spatial-reused space-time coded cooperative multihop network is analyzed over Rayleigh fading channels. More specifically, the exact closed-form expression for the outage probability at the nth receiving node is derived when there are multiple interferences over non-i.i.d. Rayleigh fading channels. In addition, we propose a simple power control scheme which is only dependent on the statistical knowledge of channels. Finally, the analytic results were confirmed by simulations. It is shown by simulations that the spatial-reused multihop transmission outperforms the interference-free multihop transmission in terms of energy efficiency in low and medium SNR scenarios.