Performance of Bentonite and Zeolite Mixtures as Grounding Enhancement Materials

W. Ahmad, N. Marudin, J. Jasni, M. Ab-Kadir
{"title":"Performance of Bentonite and Zeolite Mixtures as Grounding Enhancement Materials","authors":"W. Ahmad, N. Marudin, J. Jasni, M. Ab-Kadir","doi":"10.1109/APL57308.2023.10182022","DOIUrl":null,"url":null,"abstract":"Grounding system is essential in order to provide protection and to reduce the risk of severe electrical shock to the personnel as well as power system equipment during both normal and fault operation. A properly secured grounding system will enable the fault current to be dispersed to earth at the shortest time possible. Therefore, it is important to have a good grounding system in both normal and fault conditions, and one way to achieve that is by adding NEMs to treat its surrounding soil, where Bentonite and Zeolite were considered in this study. These two NEMs were mixed with water and their performances were compared to a Reference grounding system where there is no NEM installed in the vicinity of the ground conductor. The performance of such grounding systems were measured by the percentage reduction of their earth resistances, which were measured daily for 150 days, i.e. from 19th December 2016 till 18th May 2017 where Fall-of-Potential technique was employed. Note that in this work, it has found that the best grounding system in the descending order were Bentonite 100%, Bentonite and Zeolite Mix A, Bentonite and Zeolite Mix B, Zeolite 100% and References grounding systems. However, being Mix A was having a slightly better performance compared to its counterpart Mix B, it would be interesting to further engage with various mixtures of Bentonite and Zeolite as grounding enhancement materials for future works. Note that Bentonite ratio was more in Mix A compared to Mix B.","PeriodicalId":371726,"journal":{"name":"2023 12th Asia-Pacific International Conference on Lightning (APL)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 12th Asia-Pacific International Conference on Lightning (APL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APL57308.2023.10182022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Grounding system is essential in order to provide protection and to reduce the risk of severe electrical shock to the personnel as well as power system equipment during both normal and fault operation. A properly secured grounding system will enable the fault current to be dispersed to earth at the shortest time possible. Therefore, it is important to have a good grounding system in both normal and fault conditions, and one way to achieve that is by adding NEMs to treat its surrounding soil, where Bentonite and Zeolite were considered in this study. These two NEMs were mixed with water and their performances were compared to a Reference grounding system where there is no NEM installed in the vicinity of the ground conductor. The performance of such grounding systems were measured by the percentage reduction of their earth resistances, which were measured daily for 150 days, i.e. from 19th December 2016 till 18th May 2017 where Fall-of-Potential technique was employed. Note that in this work, it has found that the best grounding system in the descending order were Bentonite 100%, Bentonite and Zeolite Mix A, Bentonite and Zeolite Mix B, Zeolite 100% and References grounding systems. However, being Mix A was having a slightly better performance compared to its counterpart Mix B, it would be interesting to further engage with various mixtures of Bentonite and Zeolite as grounding enhancement materials for future works. Note that Bentonite ratio was more in Mix A compared to Mix B.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
膨润土和沸石混合物作为增强接地材料的性能
为了在正常和故障运行时提供保护并减少人员和电力系统设备遭受严重电击的危险,接地系统是必不可少的。一个安全可靠的接地系统可以使故障电流在尽可能短的时间内分散到地面上。因此,在正常和故障条件下都有一个良好的接地系统是很重要的,实现这一目标的一种方法是通过添加nem来处理其周围的土壤,本研究中考虑了膨润土和沸石。将这两种NEM与水混合,并将其性能与接地导体附近没有安装NEM的参考接地系统进行比较。这种接地系统的性能是通过其接地电阻降低的百分比来测量的,每天测量150天,即从2016年12月19日到2017年5月18日,其中采用了降电位技术。值得注意的是,在本工作中,发现最佳接地系统从高到低依次为100%膨润土、膨润土和沸石混合物A、膨润土和沸石混合物B、100%沸石和参考文献接地系统。然而,由于混合物A的性能比混合物B稍好,因此在未来的工作中,进一步使用各种膨润土和沸石的混合物作为接地增强材料将是一件有趣的事情。注意,混合A中的膨润土比混合B中的高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of cost-effective lightning protection measures for underprivileged communities Preliminary Results of Corona Discharge Current Measurements in the Early Formation of Lightning on Tower Performance of Bentonite and Peat Moss Mixtures as Grounding Enhancement Materials Thunderstorm Prediction Model Using SMOTE Sampling and Machine Learning Approach A Year of Global Lightning Deaths and Injuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1