Pawan Kumar Sarika, Deepika Badampudi, Sai Prashanth Josyula, Muhammad Usman
{"title":"Automating Microservices Test Failure Analysis using Kubernetes Cluster Logs","authors":"Pawan Kumar Sarika, Deepika Badampudi, Sai Prashanth Josyula, Muhammad Usman","doi":"10.1145/3593434.3593472","DOIUrl":null,"url":null,"abstract":"Kubernetes is a free, open-source container orchestration system for deploying and managing Docker containers that host microservices. Kubernetes cluster logs help in determining the reason for the failure. However, as systems become more complex, identifying failure reasons manually becomes more difficult and time-consuming. This study aims to identify effective and efficient classification algorithms to automatically determine the failure reason. We compare five classification algorithms, Support Vector Machines, K-Nearest Neighbors, Random Forest, Gradient Boosting Classifier, and Multilayer Perceptron. Our results indicate that Random Forest produces good accuracy while requiring fewer computational resources than other algorithms.","PeriodicalId":178596,"journal":{"name":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th International Conference on Evaluation and Assessment in Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3593434.3593472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Kubernetes is a free, open-source container orchestration system for deploying and managing Docker containers that host microservices. Kubernetes cluster logs help in determining the reason for the failure. However, as systems become more complex, identifying failure reasons manually becomes more difficult and time-consuming. This study aims to identify effective and efficient classification algorithms to automatically determine the failure reason. We compare five classification algorithms, Support Vector Machines, K-Nearest Neighbors, Random Forest, Gradient Boosting Classifier, and Multilayer Perceptron. Our results indicate that Random Forest produces good accuracy while requiring fewer computational resources than other algorithms.