Towards a Scalable and Distributed Infrastructure for Deep Learning Applications

Bita Hasheminezhad, S. Shirzad, Nanmiao Wu, Patrick Diehl, Hannes Schulz, Hartmut Kaiser
{"title":"Towards a Scalable and Distributed Infrastructure for Deep Learning Applications","authors":"Bita Hasheminezhad, S. Shirzad, Nanmiao Wu, Patrick Diehl, Hannes Schulz, Hartmut Kaiser","doi":"10.1109/DLS51937.2020.00008","DOIUrl":null,"url":null,"abstract":"Although recent scaling up approaches to train deep neural networks have proven to be effective, the computational intensity of large and complex models, as well as the availability of large-scale datasets require deep learning frameworks to utilize scaling out techniques. Parallelization approaches and distribution requirements are not considered in the primary designs of most available distributed deep learning frameworks and most of them still are not able to perform effective and efficient fine-grained inter-node communication. We present Phylanx that has the potential to alleviate these shortcomings. Phylanx presents a productivity-oriented frontend where user Python code is translated to a futurized execution tree that can be executed efficiently on multiple nodes using the C++ standard library for parallelism and concurrency (HPX), leveraging fine-grained threading and an active messaging task-based runtime system.","PeriodicalId":185533,"journal":{"name":"2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Fourth Workshop on Deep Learning on Supercomputers (DLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DLS51937.2020.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Although recent scaling up approaches to train deep neural networks have proven to be effective, the computational intensity of large and complex models, as well as the availability of large-scale datasets require deep learning frameworks to utilize scaling out techniques. Parallelization approaches and distribution requirements are not considered in the primary designs of most available distributed deep learning frameworks and most of them still are not able to perform effective and efficient fine-grained inter-node communication. We present Phylanx that has the potential to alleviate these shortcomings. Phylanx presents a productivity-oriented frontend where user Python code is translated to a futurized execution tree that can be executed efficiently on multiple nodes using the C++ standard library for parallelism and concurrency (HPX), leveraging fine-grained threading and an active messaging task-based runtime system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向深度学习应用的可扩展分布式基础设施
尽管最近训练深度神经网络的扩展方法已被证明是有效的,但大型复杂模型的计算强度以及大规模数据集的可用性要求深度学习框架利用扩展技术。在大多数可用的分布式深度学习框架的初始设计中没有考虑并行化方法和分布要求,并且大多数框架仍然无法执行有效和高效的细粒度节点间通信。我们介绍的Phylanx有可能减轻这些缺点。Phylanx提供了一个面向生产力的前端,其中用户Python代码被转换为未来化的执行树,可以使用c++并行性和并发性标准库(HPX)在多个节点上有效地执行,利用细粒度线程和基于活动消息传递任务的运行时系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online-Codistillation Meets LARS, Going beyond the Limit of Data Parallelism in Deep Learning Vandermonde Wave Function Ansatz for Improved Variational Monte Carlo TopiQAL: Topic-aware Question Answering using Scalable Domain-specific Supercomputers DDLBench: Towards a Scalable Benchmarking Infrastructure for Distributed Deep Learning [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1