Temporal sequence processing using recurrent SOM

T. Koskela, M. Varsta, J. Heikkonen, K. Kaski
{"title":"Temporal sequence processing using recurrent SOM","authors":"T. Koskela, M. Varsta, J. Heikkonen, K. Kaski","doi":"10.1109/KES.1998.725861","DOIUrl":null,"url":null,"abstract":"Recurrent self-organizing map (RSOM) is studied in temporal sequence processing. RSOM includes a recurrent difference vector in each unit of the map, which allows storing temporal context from consecutive input vectors fed to the map. RSOM is a modification of the temporal Kohonen map (TKM). It is shown that RSOM learns a correct mapping from temporal sequences of a simple synthetic data, while TKM fails to learn this mapping. In addition, two case studies are presented, in which RSOM is applied to EEG based epileptic activity detection and to time series prediction with local models. Results suggest that RSOM can be efficiently used in temporal sequence processing.","PeriodicalId":394492,"journal":{"name":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Second International Conference. Knowledge-Based Intelligent Electronic Systems. Proceedings KES'98 (Cat. No.98EX111)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KES.1998.725861","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Recurrent self-organizing map (RSOM) is studied in temporal sequence processing. RSOM includes a recurrent difference vector in each unit of the map, which allows storing temporal context from consecutive input vectors fed to the map. RSOM is a modification of the temporal Kohonen map (TKM). It is shown that RSOM learns a correct mapping from temporal sequences of a simple synthetic data, while TKM fails to learn this mapping. In addition, two case studies are presented, in which RSOM is applied to EEG based epileptic activity detection and to time series prediction with local models. Results suggest that RSOM can be efficiently used in temporal sequence processing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用循环SOM处理时间序列
研究了时间序列处理中的递归自组织映射(RSOM)。RSOM在地图的每个单元中包含一个循环差分向量,这允许存储从连续输入向量馈送到地图的时间上下文。RSOM是对时间Kohonen地图(TKM)的修改。结果表明,RSOM可以从简单合成数据的时间序列中学习到正确的映射,而TKM不能学习到这种映射。此外,本文还介绍了将RSOM应用于基于EEG的癫痫活动检测和基于局部模型的时间序列预测的两个案例。结果表明,RSOM可以有效地用于时间序列处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analog VLSI which emulates biological vision Transient signal analysis and classification for condition monitoring of power switching equipment using wavelet transform and artificial neural networks A research concerning a concept generation and an action of an agent Insect vision based motion detection Chaos signal generator by IIR digital filters including nonlinear functions and its application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1