Gender classification from multispectral periocular images

Juan E. Tapia, Ignacio A. Viedma
{"title":"Gender classification from multispectral periocular images","authors":"Juan E. Tapia, Ignacio A. Viedma","doi":"10.1109/BTAS.2017.8272774","DOIUrl":null,"url":null,"abstract":"Gender classification from multispectral periocular and iris images is a new topic on soft-biometric research. The feature extracted from RGB images and Near Infrared Images shows complementary information independent of the spectrum of the images. This paper shows that we canfusion these information improving the accuracy of gender classification. Most gender classification methods reported in the literature has used images from face databases and all the features for classification purposes. Experimental results suggest: (a) Features extracted in different scales can perform better than using only one feature in a single scale; (b) The periocular images performed better than iris images on VIS and NIR; c) The fusion of features on different spectral images NIR and VIS allows improve the accuracy; (c) The feature selection applied to NIR and VIS allows select relevant features and d) Our accuracy 90% is competitive with the state of the art.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Gender classification from multispectral periocular and iris images is a new topic on soft-biometric research. The feature extracted from RGB images and Near Infrared Images shows complementary information independent of the spectrum of the images. This paper shows that we canfusion these information improving the accuracy of gender classification. Most gender classification methods reported in the literature has used images from face databases and all the features for classification purposes. Experimental results suggest: (a) Features extracted in different scales can perform better than using only one feature in a single scale; (b) The periocular images performed better than iris images on VIS and NIR; c) The fusion of features on different spectral images NIR and VIS allows improve the accuracy; (c) The feature selection applied to NIR and VIS allows select relevant features and d) Our accuracy 90% is competitive with the state of the art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多光谱眼周图像的性别分类
基于多光谱眼周和虹膜图像的性别分类是软生物识别研究的一个新课题。从RGB图像和近红外图像中提取的特征显示出独立于图像光谱的互补信息。本文表明,我们可以融合这些信息,提高性别分类的准确性。文献报道的大多数性别分类方法都是使用人脸数据库中的图像和所有特征进行分类。实验结果表明:(a)在不同尺度上提取的特征比在单一尺度上只提取一个特征的效果更好;(b)眼周图像在VIS和NIR上优于虹膜图像;c) NIR和VIS不同光谱图像的特征融合,提高了精度;(c)应用于近红外和VIS的特征选择允许选择相关特征;d)我们90%的准确率与最先进的技术相竞争。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1