Knowledge Enhanced Personalized Search

Shuqi Lu, Zhicheng Dou, Chenyan Xiong, Xiaojie Wang, Ji-rong Wen
{"title":"Knowledge Enhanced Personalized Search","authors":"Shuqi Lu, Zhicheng Dou, Chenyan Xiong, Xiaojie Wang, Ji-rong Wen","doi":"10.1145/3397271.3401089","DOIUrl":null,"url":null,"abstract":"This paper presents a knowledge graph enhanced personalized search model, KEPS. For each user and her queries, KEPS first con- ducts personalized entity linking on the queries and forms better intent representations; then it builds a knowledge enhanced profile for the user, using memory networks to store the predicted search intents and linked entities in her search history. The knowledge enhanced user profile and intent representation are then utilized by KEPS for better, knowledge enhanced, personalized search. Furthermore, after providing personalized search for each query, KEPS leverages user's feedback (click on documents) to post-adjust the entity linking on previous queries. This fixes previous linking errors and improves ranking quality for future queries. Experiments on the public AOL search log demonstrate the advantage of knowledge in personalized search: personalized entity linking better reflects user's search intent, the memory networks better maintain user's subtle preferences, and the post linking adjustment fixes some linking errors with the received feedback signals. The three components together lead to a significantly better ranking accuracy of KEPS.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper presents a knowledge graph enhanced personalized search model, KEPS. For each user and her queries, KEPS first con- ducts personalized entity linking on the queries and forms better intent representations; then it builds a knowledge enhanced profile for the user, using memory networks to store the predicted search intents and linked entities in her search history. The knowledge enhanced user profile and intent representation are then utilized by KEPS for better, knowledge enhanced, personalized search. Furthermore, after providing personalized search for each query, KEPS leverages user's feedback (click on documents) to post-adjust the entity linking on previous queries. This fixes previous linking errors and improves ranking quality for future queries. Experiments on the public AOL search log demonstrate the advantage of knowledge in personalized search: personalized entity linking better reflects user's search intent, the memory networks better maintain user's subtle preferences, and the post linking adjustment fixes some linking errors with the received feedback signals. The three components together lead to a significantly better ranking accuracy of KEPS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
知识增强个性化搜索
提出了一种知识图谱增强的个性化搜索模型KEPS。对于每个用户及其查询,KEPS首先在查询上进行个性化的实体链接,形成更好的意图表示;然后,它为用户建立一个知识增强的配置文件,使用记忆网络存储预测的搜索意图和搜索历史中的链接实体。知识增强的用户档案和意图表示随后被KEPS用于更好的、知识增强的、个性化的搜索。此外,在为每个查询提供个性化搜索之后,KEPS利用用户的反馈(点击文档)对先前查询上的实体链接进行后期调整。这修复了以前的链接错误,并提高了未来查询的排名质量。在AOL公共搜索日志上的实验证明了知识在个性化搜索中的优势:个性化实体链接能更好地反映用户的搜索意图,记忆网络能更好地维护用户的微妙偏好,后链接调整能根据接收到的反馈信号修正一些链接错误。这三个组成部分共同提高了KEPS的排序精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1