Improved Ant Colony Algorithm Based on Parameters Optimization for AGV Path Planning

Zhou Yang, Haibin Liu, R. Xie
{"title":"Improved Ant Colony Algorithm Based on Parameters Optimization for AGV Path Planning","authors":"Zhou Yang, Haibin Liu, R. Xie","doi":"10.1109/ISCEIC53685.2021.00025","DOIUrl":null,"url":null,"abstract":"Path planning is a key technology in the research of Automatic Guided Vehicle (AGV). To solve the problem that the traditional Ant Colony Optimization (ACO) algorithm has poor convergence, low search efficiency, and easy to fall into the local optimality problems in AGV path planning, some improved methods are proposed in this paper. Through initial pheromones non-uniform and directed distribution to determine the search direction in the early stage, the search efficiency and convergence speed of the algorithm is improved. By adding the adaptive adjustment strategy of the iterations number, the computation amount and time complexity of the algorithm are greatly reduced. The parameters of ACO have an important influence on the convergence and the optimization effect, but there are no scientific bases to decide the values. To solve the above problem the improved ACO parameters are optimized by using the genetic algorithm (GA) which has good global search ability and easy fusion with other algorithms to find the parameters combination for the best performance of ACO. Simulation experiments in different environments show that the improved ACO has a better optimization effect and higher search efficiency compared with the traditional ACO.","PeriodicalId":342968,"journal":{"name":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Symposium on Computer Engineering and Intelligent Communications (ISCEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCEIC53685.2021.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Path planning is a key technology in the research of Automatic Guided Vehicle (AGV). To solve the problem that the traditional Ant Colony Optimization (ACO) algorithm has poor convergence, low search efficiency, and easy to fall into the local optimality problems in AGV path planning, some improved methods are proposed in this paper. Through initial pheromones non-uniform and directed distribution to determine the search direction in the early stage, the search efficiency and convergence speed of the algorithm is improved. By adding the adaptive adjustment strategy of the iterations number, the computation amount and time complexity of the algorithm are greatly reduced. The parameters of ACO have an important influence on the convergence and the optimization effect, but there are no scientific bases to decide the values. To solve the above problem the improved ACO parameters are optimized by using the genetic algorithm (GA) which has good global search ability and easy fusion with other algorithms to find the parameters combination for the best performance of ACO. Simulation experiments in different environments show that the improved ACO has a better optimization effect and higher search efficiency compared with the traditional ACO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数优化的AGV路径规划改进蚁群算法
路径规划是自动导引车研究中的一项关键技术。针对传统蚁群优化(Ant Colony Optimization, ACO)算法在AGV路径规划中收敛性差、搜索效率低、易陷入局部最优问题等问题,提出了一些改进方法。通过初始信息素的非均匀定向分布,在早期确定搜索方向,提高了算法的搜索效率和收敛速度。通过增加迭代次数的自适应调整策略,大大降低了算法的计算量和时间复杂度。蚁群算法的参数对算法的收敛性和优化效果有重要影响,但其取值尚无科学依据。为了解决上述问题,采用具有良好全局搜索能力和易于与其他算法融合的遗传算法对改进蚁群算法的参数进行优化,以找到蚁群算法性能最佳的参数组合。不同环境下的仿真实验表明,与传统蚁群算法相比,改进蚁群算法具有更好的优化效果和更高的搜索效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Research on the Mechanical Zero Position Capture and Transfer of Steering Gear Based on Machine Vision Adaptive image watermarking algorithm based on visual characteristics Gaussian Image Denoising Method Based on the Dual Channel Deep Neural Network with the Skip Connection Design and Realization of Drum Level Control System for 300MW Unit New energy charging pile planning in residential area based on improved genetic algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1