Cardiac Abnormality Prediction using Logsig-Based MLP Network

Syahrull Hi-Fi Syam Ahmad Jamil, Abdul Rashid Alias, Mohamad Taufik A. Rahman, F.R. Hashim, S. Shaharuddin, Mohd. Sabri
{"title":"Cardiac Abnormality Prediction using Logsig-Based MLP Network","authors":"Syahrull Hi-Fi Syam Ahmad Jamil, Abdul Rashid Alias, Mohamad Taufik A. Rahman, F.R. Hashim, S. Shaharuddin, Mohd. Sabri","doi":"10.1109/ICCSCE54767.2022.9935583","DOIUrl":null,"url":null,"abstract":"Regardless of gender, age, or ethnicity, anyone can get cardiac illness. However, the likelihood of intermediate heart failure is very well predicted by family history. Cardiovascular abnormalities, which rarely show early symptoms, cause patients to die suddenly. The electrical activity or surge that makes up the heartbeat is usually erratic. The Multilayer Perceptron (MLP) network is used in this study as an early detection method for cardiac issues. Using a number of training techniques using Logsig as the MLP network's activation function, the cardiac anomaly dataset from the MIT-BIH database is used to train the chosen MLP network. According to the study, the MLP network's BR training strategy outperformed other strategies with mean square errors (MSE) of 0.0212 and regression performance of 0.9867.","PeriodicalId":346014,"journal":{"name":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 12th International Conference on Control System, Computing and Engineering (ICCSCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSCE54767.2022.9935583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Regardless of gender, age, or ethnicity, anyone can get cardiac illness. However, the likelihood of intermediate heart failure is very well predicted by family history. Cardiovascular abnormalities, which rarely show early symptoms, cause patients to die suddenly. The electrical activity or surge that makes up the heartbeat is usually erratic. The Multilayer Perceptron (MLP) network is used in this study as an early detection method for cardiac issues. Using a number of training techniques using Logsig as the MLP network's activation function, the cardiac anomaly dataset from the MIT-BIH database is used to train the chosen MLP network. According to the study, the MLP network's BR training strategy outperformed other strategies with mean square errors (MSE) of 0.0212 and regression performance of 0.9867.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于loglog的MLP网络心脏异常预测
不论性别、年龄或种族,任何人都可能得心脏病。然而,家族史可以很好地预测中度心力衰竭的可能性。很少出现早期症状的心血管异常会导致患者突然死亡。构成心跳的电活动或脉冲通常是不稳定的。在本研究中,多层感知器(MLP)网络被用作心脏问题的早期检测方法。使用Logsig作为MLP网络的激活函数,使用来自MIT-BIH数据库的心脏异常数据集来训练所选的MLP网络。根据研究,MLP网络的BR训练策略优于其他策略,均方误差(MSE)为0.0212,回归性能为0.9867。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Enforcements of Wireless Based Matrix LED Message Moving Display by HD-W60 Microcontroller Multilayer Perceptron Optimization of ECG Peaks for Cardiac Abnormality Detection Domestic Trash Classification with Transfer Learning Using VGG16 Telemetry System for Highland Tomato Plants Using Ubidots Platform Systematic Literature Review of Security Control Assessment Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1