Local search in smooth convex sets

R. Kannan, Andreas Nolte
{"title":"Local search in smooth convex sets","authors":"R. Kannan, Andreas Nolte","doi":"10.1109/SFCS.1998.743446","DOIUrl":null,"url":null,"abstract":"In this paper we analyse two very simple techniques to minimize a linear function over a convex set. The first is a deterministic algorithm based on gradient descent. The second is a randomized algorithm which makes a small local random change at every step. The second method can be used when the convex set is presented by just a membership oracle whereas the first requires something similar to a separation oracle. We define a simple notation of smoothness of convex sets and show that both algorithms provide a near optimal solution for smooth convex sets in polynomial time. We describe several application examples from linear and stochastic programming where the relevant sets are indeed smooth and thus our algorithms apply. The main point of the paper is that such simple algorithms yield good running time bounds for natural problems.","PeriodicalId":228145,"journal":{"name":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1998.743446","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we analyse two very simple techniques to minimize a linear function over a convex set. The first is a deterministic algorithm based on gradient descent. The second is a randomized algorithm which makes a small local random change at every step. The second method can be used when the convex set is presented by just a membership oracle whereas the first requires something similar to a separation oracle. We define a simple notation of smoothness of convex sets and show that both algorithms provide a near optimal solution for smooth convex sets in polynomial time. We describe several application examples from linear and stochastic programming where the relevant sets are indeed smooth and thus our algorithms apply. The main point of the paper is that such simple algorithms yield good running time bounds for natural problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光滑凸集的局部搜索
在本文中,我们分析了两个非常简单的方法来最小化凸集上的线性函数。第一种是基于梯度下降的确定性算法。第二种是随机算法,每一步都会产生一个小的局部随机变化。第二种方法可以在凸集仅由隶属度oracle表示的情况下使用,而第一种方法需要类似于分离oracle的东西。我们定义了凸集光滑性的一个简单符号,并证明了这两种算法在多项式时间内提供了光滑凸集的近最优解。我们描述了线性和随机规划的几个应用实例,其中相关集确实是光滑的,因此我们的算法适用。本文的主要观点是,这种简单的算法为自然问题提供了良好的运行时间界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Faster and simpler algorithms for multicommodity flow and other fractional packing problems Lower bounds for zero knowledge on the Internet Algorithms to tile the infinite grid with finite clusters Recommendation systems: a probabilistic analysis A characterization of NC by tree recurrence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1