An Analytical and Experimental Model for a Thermosyphon That Employs Solid/Liquid Phase Change Materials

A. Nnanna, K. T. Harris, A. Haji-sheikh
{"title":"An Analytical and Experimental Model for a Thermosyphon That Employs Solid/Liquid Phase Change Materials","authors":"A. Nnanna, K. T. Harris, A. Haji-sheikh","doi":"10.1115/imece2000-1520","DOIUrl":null,"url":null,"abstract":"\n Application of solid/liquid phase change material (PCM) for passive cooling of electronic modules is on the increase. A simplified method of predicting the thermal performance of passive cooling systems is needed for efficient design of thermal storage systems. This paper presents an experimental and approximate analytical method for quick estimation of the rate of thermal transport in solid/liquid PCM during and after the melting process. However, the emphasis of this paper is on the transport phenomena after the melting process is completed. This research is motivated in part by the need for a simplified analytical method of predicting the rate of heat transfer in buoyancy-driven fluids within a partitioned enclosure, and the need for a fundamental understanding of the rate of heat transfer in liquid melt after the phase change phenomena. These needs are of practical importance for efficient design of a thermal energy storage system. The approximate analytical model serves as a quick method of studying the performance of a thermosyphon system.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Application of solid/liquid phase change material (PCM) for passive cooling of electronic modules is on the increase. A simplified method of predicting the thermal performance of passive cooling systems is needed for efficient design of thermal storage systems. This paper presents an experimental and approximate analytical method for quick estimation of the rate of thermal transport in solid/liquid PCM during and after the melting process. However, the emphasis of this paper is on the transport phenomena after the melting process is completed. This research is motivated in part by the need for a simplified analytical method of predicting the rate of heat transfer in buoyancy-driven fluids within a partitioned enclosure, and the need for a fundamental understanding of the rate of heat transfer in liquid melt after the phase change phenomena. These needs are of practical importance for efficient design of a thermal energy storage system. The approximate analytical model serves as a quick method of studying the performance of a thermosyphon system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用固/液相变材料的热虹吸管的分析和实验模型
固/液相变材料(PCM)在电子模块被动冷却中的应用日益增多。为了有效地设计蓄热系统,需要一种预测被动冷却系统热性能的简化方法。本文提出了一种快速估算固态/液态PCM熔化过程中和熔化后热传递速率的实验和近似分析方法。然而,本文的重点是在熔化过程完成后的输运现象。这项研究的动机部分是由于需要一种简化的分析方法来预测在一个分区的外壳内浮力驱动的流体的传热速率,以及需要对相变现象后液体熔体的传热速率有一个基本的了解。这些需求对于高效设计蓄热系统具有重要的现实意义。近似解析模型是研究热虹吸系统性能的一种快速方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1