Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN

R. Jose, A. Pe
{"title":"Analysis of hard decision and soft decision decoding algorithms of LDPC codes in AWGN","authors":"R. Jose, A. Pe","doi":"10.1109/IADCC.2015.7154744","DOIUrl":null,"url":null,"abstract":"This article compares the Bit Error Rate (BER) performance of soft and hard decision decoding algorithms of LDPC codes on AWGN channel at different code rates and Signal to Noise Ratio (SNR) levels. Even though, hard decision decoding algorithm is computationally simple, its BER performance is not appreciable. Devising soft decision decoding algorithms which are simple and good in BER performance requires comparison of probabilistic and log domain methods. Towards this, a code word is generated through modulo(2) addition between message bits and generator matrix. After Binary Phase Shift Keying (BPSK) modulation the AWGN noise is introduced to the modulated code word. BER performance is computed by comparing the message decoded by soft and hard decision algorithms with the transmitted message. The experiment is conducted in MATLAB. Soft decision decoding algorithm in log domain provides better BER performance than hard decision decoding algorithm regardless of the SNR level.","PeriodicalId":123908,"journal":{"name":"2015 IEEE International Advance Computing Conference (IACC)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Advance Computing Conference (IACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IADCC.2015.7154744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

This article compares the Bit Error Rate (BER) performance of soft and hard decision decoding algorithms of LDPC codes on AWGN channel at different code rates and Signal to Noise Ratio (SNR) levels. Even though, hard decision decoding algorithm is computationally simple, its BER performance is not appreciable. Devising soft decision decoding algorithms which are simple and good in BER performance requires comparison of probabilistic and log domain methods. Towards this, a code word is generated through modulo(2) addition between message bits and generator matrix. After Binary Phase Shift Keying (BPSK) modulation the AWGN noise is introduced to the modulated code word. BER performance is computed by comparing the message decoded by soft and hard decision algorithms with the transmitted message. The experiment is conducted in MATLAB. Soft decision decoding algorithm in log domain provides better BER performance than hard decision decoding algorithm regardless of the SNR level.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AWGN中LDPC码的硬判决和软判决译码算法分析
本文比较了AWGN信道上LDPC码在不同码率和信噪比下的软判决译码算法和硬判决译码算法的误码率性能。硬判决译码算法虽然计算简单,但其误码率性能并不理想。设计简单且具有良好误码率性能的软判决译码算法需要对概率方法和对数域方法进行比较。为此,通过消息位与生成器矩阵之间的模(2)加法生成一个码字。二值相移键控(BPSK)调制后,在被调制码字中引入AWGN噪声。通过比较软决策算法和硬决策算法解码的消息与传输的消息来计算误码率性能。实验在MATLAB中进行。无论信噪比如何,对数域软判决译码算法都比硬判决译码算法具有更好的误码率性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of Hurst parameter and fuzzy logic for denial of service attack detection Word Size Removal (WSR) method for Bit Parallel String Matching Modified HYPR algorithm - A promising technique for low dose imaging Generic trajectory model for Network Centric Warfare enhanced using data mining Randomized algorithm for trust model in Grid Computing using GridSim components
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1