3D-CNN Autoencoder for Plenoptic Image Compression

Tingting Zhong, Xin Jin, Kedeng Tong
{"title":"3D-CNN Autoencoder for Plenoptic Image Compression","authors":"Tingting Zhong, Xin Jin, Kedeng Tong","doi":"10.1109/VCIP49819.2020.9301793","DOIUrl":null,"url":null,"abstract":"Recently, plenoptic image has attracted great attentions because of its applications in various scenarios. However, high resolution and special pixel distribution structure bring huge challenges to its storage and transmission. In order to adapt compression to the structural characteristic of plenoptic image, in this paper, we propose a Data Structure Adaptive 3D-convolutional(DSA-3D) autoencoder. The DSA-3D autoencoder enables up-sampling and down-samping the sub-aperture sequence along the angular resolution or spatial resolution, thereby avoiding the artifacts caused by directly compressing plenoptic image and achieving better compression efficiency. In addition, we propose a special and efficient Square rearrangement to generate sub-aperture sequence. We compare Square with Zigzag sub-aperture sequence rearrangements, and analyzed the compression efficiency of block image compression and whole image compression. Compared with traditional hybrid encoders HEVC, JPEG2000 and JPEG PLENO(WaSP), the proposed DSA-3D(Square) autoencoder achieves a superior performance in terms of PSNR metrics.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, plenoptic image has attracted great attentions because of its applications in various scenarios. However, high resolution and special pixel distribution structure bring huge challenges to its storage and transmission. In order to adapt compression to the structural characteristic of plenoptic image, in this paper, we propose a Data Structure Adaptive 3D-convolutional(DSA-3D) autoencoder. The DSA-3D autoencoder enables up-sampling and down-samping the sub-aperture sequence along the angular resolution or spatial resolution, thereby avoiding the artifacts caused by directly compressing plenoptic image and achieving better compression efficiency. In addition, we propose a special and efficient Square rearrangement to generate sub-aperture sequence. We compare Square with Zigzag sub-aperture sequence rearrangements, and analyzed the compression efficiency of block image compression and whole image compression. Compared with traditional hybrid encoders HEVC, JPEG2000 and JPEG PLENO(WaSP), the proposed DSA-3D(Square) autoencoder achieves a superior performance in terms of PSNR metrics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D-CNN自编码器的全光学图像压缩
近年来,全光学图像因其在各种场景中的应用而备受关注。然而,高分辨率和特殊的像素分布结构给其存储和传输带来了巨大的挑战。为了使压缩适应全光图像的结构特点,本文提出了一种数据结构自适应3d -卷积(DSA-3D)自编码器。DSA-3D自编码器可以沿角分辨率或空间分辨率对子孔径序列进行上采样和下采样,从而避免了直接压缩全光图像产生的伪影,获得了更好的压缩效率。此外,我们还提出了一种特殊而高效的Square重排方法来生成子孔径序列。我们比较了方形和锯齿形子孔径序列重排,并分析了块图像压缩和整幅图像压缩的压缩效率。与传统的混合编码器HEVC、JPEG2000和JPEG PLENO(WaSP)相比,本文提出的DSA-3D(Square)自编码器在PSNR指标方面具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1