D-CARS: A Declarative Context-Aware Recommender System

Rosni Lumbantoruan, Xiangmin Zhou, Yongli Ren, Z. Bao
{"title":"D-CARS: A Declarative Context-Aware Recommender System","authors":"Rosni Lumbantoruan, Xiangmin Zhou, Yongli Ren, Z. Bao","doi":"10.1109/ICDM.2018.00151","DOIUrl":null,"url":null,"abstract":"Context-aware recommendation has emerged as perhaps the most popular service over online sites, and has seen applications to domains as diverse as entertainment, e-business, e-health and government services. There has been recent significant progress on the quality and scalability of recommender systems. However, we believe that different target users concern different contexts when they select an online item, which can greatly affect the quality of recommendation, and have not been investigated yet. In this paper, we propose a new type of recommender system, Declarative Context-Aware Recommender System (D-CARS), which enables the personalization of the contexts exploited for each target user by automatically analysing the viewing history of users. First, we propose a novel User-Window Non-negative Matrix Factorization topic model (UW-NMF) that adaptively identifies the significant contexts of users and constructs user profiles in a personalized manner. Then, we design a novel declarative context-aware recommendation algorithm that exploits the user context preference to identify a group of item candidates and its context distribution, based on a Subspace Ensemble Tree Model (SETM), which is constructed in the identified context subspace for item recommendation. Finally, we propose an algorithm that incrementally maintains our SETM model. Extensive experiments are conducted to prove the high effectiveness and efficiency of our D-CARS system.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Context-aware recommendation has emerged as perhaps the most popular service over online sites, and has seen applications to domains as diverse as entertainment, e-business, e-health and government services. There has been recent significant progress on the quality and scalability of recommender systems. However, we believe that different target users concern different contexts when they select an online item, which can greatly affect the quality of recommendation, and have not been investigated yet. In this paper, we propose a new type of recommender system, Declarative Context-Aware Recommender System (D-CARS), which enables the personalization of the contexts exploited for each target user by automatically analysing the viewing history of users. First, we propose a novel User-Window Non-negative Matrix Factorization topic model (UW-NMF) that adaptively identifies the significant contexts of users and constructs user profiles in a personalized manner. Then, we design a novel declarative context-aware recommendation algorithm that exploits the user context preference to identify a group of item candidates and its context distribution, based on a Subspace Ensemble Tree Model (SETM), which is constructed in the identified context subspace for item recommendation. Finally, we propose an algorithm that incrementally maintains our SETM model. Extensive experiments are conducted to prove the high effectiveness and efficiency of our D-CARS system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D-CARS:声明式上下文感知推荐系统
上下文感知推荐可能已经成为在线站点上最受欢迎的服务,并已应用于娱乐、电子商务、电子保健和政府服务等各种领域。最近在推荐系统的质量和可扩展性方面取得了重大进展。然而,我们认为不同的目标用户在选择在线商品时关注不同的上下文,这可能会极大地影响推荐的质量,目前还没有研究。在本文中,我们提出了一种新型的推荐系统,声明式上下文感知推荐系统(D-CARS),它通过自动分析用户的观看历史,为每个目标用户提供个性化的上下文。首先,我们提出了一种新的用户窗口非负矩阵分解主题模型(UW-NMF),该模型自适应地识别用户的重要上下文并以个性化的方式构建用户配置文件。然后,我们设计了一种新的声明式上下文感知推荐算法,该算法基于子空间集成树模型(SETM),利用用户上下文偏好来识别一组候选项目及其上下文分布,该子空间集成树模型在识别出的上下文子空间中构造,用于项目推荐。最后,我们提出了一种增量式维护SETM模型的算法。大量的实验证明了我们的D-CARS系统的高效性和高效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Entire Regularization Path for Sparse Nonnegative Interaction Model Accelerating Experimental Design by Incorporating Experimenter Hunches Title Page i An Efficient Many-Class Active Learning Framework for Knowledge-Rich Domains Social Recommendation with Missing Not at Random Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1