Bird-SDPS: A Migratory Birds' Spatial Distribution Prediction System

Yuanchun Zhou, Jing Shao, Xuezhi Wang, Ze Luo, Jianhui Li, Baoping Yan
{"title":"Bird-SDPS: A Migratory Birds' Spatial Distribution Prediction System","authors":"Yuanchun Zhou, Jing Shao, Xuezhi Wang, Ze Luo, Jianhui Li, Baoping Yan","doi":"10.1109/eScience.2013.12","DOIUrl":null,"url":null,"abstract":"Species distribution modeling is an important ecological research task that has received a great deal of interest. There are several single model packages and applications available for species distribution analysis. This paper introduces Bird-SDPS, a Prediction System for Migratory Birds' Spatial Distribution, which is an extensible system for birds' spatial distribution prediction. The Bird-SDPS uses birds' GPS tracking data and remote sensing data as input to build multiple distribution models, which are implemented by different programming languages. And the system provides online access and visualization functions. In order to store large dataset of remote sensing data, we design a hybrid storage structure based on HBase. We extensively evaluate our system using a real-world GPS dataset collected from 90 wild birds over 3 years. We show that the system can conduct birds' distribution prediction based on multiple models, and our hybrid data storage modes can outperform the traditional storage modes of files.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Species distribution modeling is an important ecological research task that has received a great deal of interest. There are several single model packages and applications available for species distribution analysis. This paper introduces Bird-SDPS, a Prediction System for Migratory Birds' Spatial Distribution, which is an extensible system for birds' spatial distribution prediction. The Bird-SDPS uses birds' GPS tracking data and remote sensing data as input to build multiple distribution models, which are implemented by different programming languages. And the system provides online access and visualization functions. In order to store large dataset of remote sensing data, we design a hybrid storage structure based on HBase. We extensively evaluate our system using a real-world GPS dataset collected from 90 wild birds over 3 years. We show that the system can conduct birds' distribution prediction based on multiple models, and our hybrid data storage modes can outperform the traditional storage modes of files.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
候鸟空间分布预测系统- sdps
物种分布建模是一项重要的生态学研究任务,受到了广泛的关注。有几个单一的模型包和应用程序可用于物种分布分析。本文介绍了候鸟空间分布预测系统Bird-SDPS,这是一个可扩展的候鸟空间分布预测系统。Bird-SDPS利用鸟类的GPS跟踪数据和遥感数据作为输入,构建多个分布模型,通过不同的编程语言实现。系统提供在线访问和可视化功能。为了存储大型遥感数据集,设计了一种基于HBase的混合存储结构。我们使用从90只野生鸟类收集的真实世界GPS数据集对我们的系统进行了广泛的评估。结果表明,该系统能够基于多个模型进行鸟类分布预测,混合数据存储模式优于传统的文件存储模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Policy Derived Access Rights in the Social Cloud Accelerating In-memory Cross Match of Astronomical Catalogs Scientific Analysis by Queries in Extended SPARQL over a Scalable e-Science Data Store Malleable Access Rights to Establish and Enable Scientific Collaboration An Autonomous Security Storage Solution for Data-Intensive Cooperative Cloud Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1