ANN and space mapping for microwave modelling and optimization

Q. Zhang, J. Bandler, S. Koziel, H. Kabir, Lei Zhang
{"title":"ANN and space mapping for microwave modelling and optimization","authors":"Q. Zhang, J. Bandler, S. Koziel, H. Kabir, Lei Zhang","doi":"10.1109/MWSYM.2010.5515941","DOIUrl":null,"url":null,"abstract":"Artificial neural network (ANN) and space mapping are recognized as two major recent advances in microwave CAD. ANNs can be trained to learn EM and physics behaviour from component data, and trained ANNs can be used in high-level circuit design. Space mapping has proved to be a breakthrough in engineering optimization allowing expensive EM optimization to be performed effectively with the help of “coarse” or surrogate models. Recent advance also led to neuro-space mapping, combining the advantages of ANN and space mapping for efficient modelling of microwave components. This paper presents an overview of the state-of-art of microwave modelling and design with ANN, space mapping and neuro-space mapping.","PeriodicalId":341557,"journal":{"name":"2010 IEEE MTT-S International Microwave Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE MTT-S International Microwave Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2010.5515941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Artificial neural network (ANN) and space mapping are recognized as two major recent advances in microwave CAD. ANNs can be trained to learn EM and physics behaviour from component data, and trained ANNs can be used in high-level circuit design. Space mapping has proved to be a breakthrough in engineering optimization allowing expensive EM optimization to be performed effectively with the help of “coarse” or surrogate models. Recent advance also led to neuro-space mapping, combining the advantages of ANN and space mapping for efficient modelling of microwave components. This paper presents an overview of the state-of-art of microwave modelling and design with ANN, space mapping and neuro-space mapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于微波建模和优化的神经网络和空间映射
人工神经网络(ANN)和空间映射被认为是微波计算机辅助设计的两大最新进展。经过训练的人工神经网络可以从元件数据中学习电磁和物理行为,并且训练后的人工神经网络可以用于高级电路设计。空间映射已被证明是工程优化的一个突破,它允许在“粗”模型或替代模型的帮助下有效地执行昂贵的EM优化。最近的进展也导致了神经空间映射,结合了人工神经网络和空间映射的优点,有效地建模微波组件。本文综述了利用人工神经网络、空间映射和神经空间映射进行微波建模和设计的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A new approach to design low cost, low complexity phased arrays Use of ground planes within the spatial images technique: Application to the analysis of rectangular multilayered shielded enclosures Negative and zero group velocity in microstrip/negative-refractive-index transmission-line couplers A dual-mode mm-wave injection-locked frequency divider with greater than 18% locking range in 65nm CMOS Asymmetric multilevel outphasing transmitter using class-E PAs with discrete pulse width modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1