Xinyi Zhou, Junjie Ye, Chak-Wa Pui, Kun Shao, Guangliang Zhang, Bin Wang, Jianye Hao, Guangyong Chen, P. Heng
{"title":"Heterogeneous Graph Neural Network-based Imitation Learning for Gate Sizing Acceleration","authors":"Xinyi Zhou, Junjie Ye, Chak-Wa Pui, Kun Shao, Guangliang Zhang, Bin Wang, Jianye Hao, Guangyong Chen, P. Heng","doi":"10.1145/3508352.3549361","DOIUrl":null,"url":null,"abstract":"Gate Sizing is an important step in logic synthesis, where the cells are resized to optimize metrics such as area, timing, power, leakage, etc. In this work, we consider the gate sizing problem for leakage power optimization with timing constraints. Lagrangian Relaxation is a widely employed optimization method for gate sizing problems. We accelerate Lagrangian Relaxation-based algorithms by narrowing down the range of cells to resize. In particular, we formulate a heterogeneous directed graph to represent the timing graph, propose a heterogeneous graph neural network as the encoder, and train in the way of imitation learning to mimic the selection behavior of each iteration in Lagrangian Relaxation. This network is used to predict the set of cells that need to be changed during the optimization process of Lagrangian Relaxation. Experiments show that our accelerated gate sizer could achieve comparable performance to the baseline with an average of 22.5% runtime reduction.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Gate Sizing is an important step in logic synthesis, where the cells are resized to optimize metrics such as area, timing, power, leakage, etc. In this work, we consider the gate sizing problem for leakage power optimization with timing constraints. Lagrangian Relaxation is a widely employed optimization method for gate sizing problems. We accelerate Lagrangian Relaxation-based algorithms by narrowing down the range of cells to resize. In particular, we formulate a heterogeneous directed graph to represent the timing graph, propose a heterogeneous graph neural network as the encoder, and train in the way of imitation learning to mimic the selection behavior of each iteration in Lagrangian Relaxation. This network is used to predict the set of cells that need to be changed during the optimization process of Lagrangian Relaxation. Experiments show that our accelerated gate sizer could achieve comparable performance to the baseline with an average of 22.5% runtime reduction.