Modeling Learner Profiles using Ontologies and Machine Learning

Samia Bousalem, Fouzia Benchikha, Massinissa Chelghoum
{"title":"Modeling Learner Profiles using Ontologies and Machine Learning","authors":"Samia Bousalem, Fouzia Benchikha, Massinissa Chelghoum","doi":"10.1109/NTIC55069.2022.10100497","DOIUrl":null,"url":null,"abstract":"In recent years, E-learning technologies have altered the way we teach and learn, making it an intriguing research topic for enhancing education. A key component of these systems is the ability to tailor the learning experience to the needs of the individual student. According to researches, modeling student profiles with an ontology is quite relevant. However, the ontology must consider every aspect of learner representation. Therefore, there is an urgent need for new comprehensive information to improve the learner profile. In this paper, we propose a semantic approach to define an ontology of learner profiles. In addition, a learning style prediction system based on machine learning techniques is developed. Empirical results show a promising gain in performance for learning style prediction systems.","PeriodicalId":403927,"journal":{"name":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on New Technologies of Information and Communication (NTIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTIC55069.2022.10100497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, E-learning technologies have altered the way we teach and learn, making it an intriguing research topic for enhancing education. A key component of these systems is the ability to tailor the learning experience to the needs of the individual student. According to researches, modeling student profiles with an ontology is quite relevant. However, the ontology must consider every aspect of learner representation. Therefore, there is an urgent need for new comprehensive information to improve the learner profile. In this paper, we propose a semantic approach to define an ontology of learner profiles. In addition, a learning style prediction system based on machine learning techniques is developed. Empirical results show a promising gain in performance for learning style prediction systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用本体和机器学习建模学习者配置文件
近年来,电子学习技术改变了我们的教学方式,使其成为加强教育的一个有趣的研究课题。这些系统的一个关键组成部分是根据个别学生的需要定制学习经验的能力。研究表明,利用本体对学生档案进行建模是很有意义的。然而,本体必须考虑学习者表示的各个方面。因此,迫切需要新的综合性信息来提高学习者的素质。在本文中,我们提出了一种语义方法来定义学习者概况本体。此外,还开发了一种基于机器学习技术的学习风格预测系统。实证结果表明,学习风格预测系统在性能上有很大的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
NTIC 2022 Cover Page Solving Multiconstrained Quality of service Multicast Routing Problem using Simulated Annealing Algorithm Evolution of passive user interests by analyzing Social Network activities Semantic segmentation of remote sensing images using U-net and its variants : Conference New Technologies of Information and Communication (NTIC 2022) Skyline Computation Based on Previously Computed Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1