A. Proietti, A. Rinaldi, A. Tamburrano, G. De Bellis, M. S. Sarto
{"title":"Wideband radar absorbing panels with lossy multilayer graphene and carbon nanofiber-based coating","authors":"A. Proietti, A. Rinaldi, A. Tamburrano, G. De Bellis, M. S. Sarto","doi":"10.1109/ISEMC.2016.7571651","DOIUrl":null,"url":null,"abstract":"A novel lightweight wideband radar absorbing material (RAM) for radio-frequency is developed using a rohacell (RC) panel coated with a film of carbon nanostructures. The coating is produced through the dispersion of either commercial graphene nanoplatelets (GNPs) or carbon nanofibers (CNFs) in 1-propanol and the deposition of the so-obtained colloidal suspension onto the RC surface with a bristle brush. Finally, a polymeric film is deposited over the carbon-based lossy layer in order to protect the lossy coating from the external environment. The electromagnetic properties of the produced panels are investigated through reflection coefficient measurements in the X and Ku bands. It is demonstrated that the RAM with the GNP-based lossy layer has a -10 dB bandwidth of ~7 GHz, but the polymeric top layer degrades its performances, resulting in a minimum reflection coefficient of -9 dB. With the CNF-based lossy layer it is possible to fabricate a RAM with a -10 dB bandwidth of ~10 GHz. The application of the protective layer reduces the bandwidth to ~6 GHz.","PeriodicalId":326016,"journal":{"name":"2016 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2016.7571651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A novel lightweight wideband radar absorbing material (RAM) for radio-frequency is developed using a rohacell (RC) panel coated with a film of carbon nanostructures. The coating is produced through the dispersion of either commercial graphene nanoplatelets (GNPs) or carbon nanofibers (CNFs) in 1-propanol and the deposition of the so-obtained colloidal suspension onto the RC surface with a bristle brush. Finally, a polymeric film is deposited over the carbon-based lossy layer in order to protect the lossy coating from the external environment. The electromagnetic properties of the produced panels are investigated through reflection coefficient measurements in the X and Ku bands. It is demonstrated that the RAM with the GNP-based lossy layer has a -10 dB bandwidth of ~7 GHz, but the polymeric top layer degrades its performances, resulting in a minimum reflection coefficient of -9 dB. With the CNF-based lossy layer it is possible to fabricate a RAM with a -10 dB bandwidth of ~10 GHz. The application of the protective layer reduces the bandwidth to ~6 GHz.