Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis

Ali Feizollah, N. B. Anuar, R. Salleh, F. Amalina
{"title":"Comparative study of k-means and mini batch k-means clustering algorithms in android malware detection using network traffic analysis","authors":"Ali Feizollah, N. B. Anuar, R. Salleh, F. Amalina","doi":"10.1109/ISBAST.2014.7013120","DOIUrl":null,"url":null,"abstract":"This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.","PeriodicalId":292333,"journal":{"name":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Symposium on Biometrics and Security Technologies (ISBAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBAST.2014.7013120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60

Abstract

This paper evaluates performance of two clustering algorithms, namely k-means and mini batch k-means, in the Android malware detection. Network traffic generated by the Android applications, normal and malicious, is analyzed for detection purpose. We have used MalGenome data sample for this work to build the dataset. We chose 800 samples out of 1260 Android malware samples. In addition, we collected numerous normal applications from the official Android market. The results show that mini batch k-means algorithm performs better than k-means algorithm in the Android malware detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络流量分析的k-means与小批量k-means聚类算法在android恶意软件检测中的比较研究
本文评估了两种聚类算法k-means和mini batch k-means在Android恶意软件检测中的性能。对Android应用程序产生的正常和恶意网络流量进行分析,以进行检测。我们使用MalGenome数据样本来构建数据集。我们从1260个Android恶意软件样本中选择了800个样本。此外,我们从Android官方市场收集了大量正常的应用程序。结果表明,小批量k-means算法在Android恶意软件检测中的性能优于k-means算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved skin detection based on dynamic threshold using multi-colour space Signature-Based Anomaly intrusion detection using Integrated data mining classifiers Distributed Denial of Service detection using hybrid machine learning technique Survey of anti-phishing tools with detection capabilities Effective mining on large databases for intrusion detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1