Clustering and Matching Headlines for Automatic Paraphrase Acquisition

S. Wubben, Antal van den Bosch, E. Krahmer, E. Marsi
{"title":"Clustering and Matching Headlines for Automatic Paraphrase Acquisition","authors":"S. Wubben, Antal van den Bosch, E. Krahmer, E. Marsi","doi":"10.3115/1610195.1610216","DOIUrl":null,"url":null,"abstract":"For developing a data-driven text rewriting algorithm for paraphrasing, it is essential to have a monolingual corpus of aligned paraphrased sentences. News article headlines are a rich source of paraphrases; they tend to describe the same event in various different ways, and can easily be obtained from the web. We compare two methods of aligning headlines to construct such an aligned corpus of paraphrases, one based on clustering, and the other on pairwise similarity-based matching. We show that the latter performs best on the task of aligning paraphrastic headlines.","PeriodicalId":307841,"journal":{"name":"European Workshop on Natural Language Generation","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Workshop on Natural Language Generation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1610195.1610216","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

For developing a data-driven text rewriting algorithm for paraphrasing, it is essential to have a monolingual corpus of aligned paraphrased sentences. News article headlines are a rich source of paraphrases; they tend to describe the same event in various different ways, and can easily be obtained from the web. We compare two methods of aligning headlines to construct such an aligned corpus of paraphrases, one based on clustering, and the other on pairwise similarity-based matching. We show that the latter performs best on the task of aligning paraphrastic headlines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自动释义获取标题的聚类与匹配
为了开发用于意译的数据驱动文本重写算法,必须有一个对齐的意译句子的单语语料库。新闻标题是释义的丰富来源;他们倾向于用各种不同的方式描述同一事件,并且可以很容易地从网络上获得。我们比较了两种对齐标题的方法来构建这样一个对齐的释义语料库,一种是基于聚类的,另一种是基于两两相似度的匹配。我们表明,后者在调整释义标题的任务上表现最好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Natural Language Generation from Pictographs A Personal Storytelling about Your Favorite Data Topic Transition Strategies for an Information-Giving Agent Sentence Ordering in Electronic Navigational Chart Companion Text Generation Generating Récit from Sensor Data: Evaluation of a Task Model for Story Planning and Preliminary Experiments with GPS Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1