Jeremy Birnbaum, H. Meng, Jeong-Hyon Hwang, C. Lawson
{"title":"Similarity-Based Compression of GPS Trajectory Data","authors":"Jeremy Birnbaum, H. Meng, Jeong-Hyon Hwang, C. Lawson","doi":"10.1109/COMGEO.2013.15","DOIUrl":null,"url":null,"abstract":"The recent increase in the use of GPS-enabled devices has introduced a new demand for efficiently storing trajectory data. In this paper, we present a new technique that has a higher compression ratio for trajectory data than existing solutions. This technique splits trajectories into sub-trajectories according to the similarities among them. For each collection of similar sub-trajectories, our technique stores only one sub-trajectory's spatial data. Each sub-trajectory is then expressed as a mapping between itself and a previous sub-trajectory. In general, these mappings can be highly compressed due to a strong correlation between the time values of trajectories. This paper presents evaluation results that show the superiority of our technique over previous solutions.","PeriodicalId":383309,"journal":{"name":"2013 Fourth International Conference on Computing for Geospatial Research and Application","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Fourth International Conference on Computing for Geospatial Research and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMGEO.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15
Abstract
The recent increase in the use of GPS-enabled devices has introduced a new demand for efficiently storing trajectory data. In this paper, we present a new technique that has a higher compression ratio for trajectory data than existing solutions. This technique splits trajectories into sub-trajectories according to the similarities among them. For each collection of similar sub-trajectories, our technique stores only one sub-trajectory's spatial data. Each sub-trajectory is then expressed as a mapping between itself and a previous sub-trajectory. In general, these mappings can be highly compressed due to a strong correlation between the time values of trajectories. This paper presents evaluation results that show the superiority of our technique over previous solutions.