An Amplified Multi Equalizer Model in LTE-OFDM System for BER Performance

Judy Simon, N. Prabakaran
{"title":"An Amplified Multi Equalizer Model in LTE-OFDM System for BER Performance","authors":"Judy Simon, N. Prabakaran","doi":"10.1109/ICOEI51242.2021.9453098","DOIUrl":null,"url":null,"abstract":"Multiple Input and Multiple Outputs (MIMO) in Orthogonal Frequency Division Multiplexing (OFDM) are an amazing strategy to handle multipath interference spread for wideband remote transmission. In this interchange, Long Term Evolution (LTE) is one of the solutions to meet the more critical transmission information rate application. This paper is proposed to diminish the Bit Error Rate (BER) and improve the overall exhibition of the LTE-OFDM model by using differing adjustment procedures under the effect of the Additive White Gaussian Noise (AWGN) channel. LTE passes on more data limit and high-speed accessibility by using more broad channels and more reception apparatus. The balance is performed using multi-equalizers, for instance, Minimum Mean Square Error (MMSE) and Maximum Likelihood Equalizer (MLE). Recreation results demonstrate that the MIMO system has a colossal transmission limit than existing techniques. The multi equalizers have incredible results than singular equalizers for the proposed LTE-OFDM model. The proposed structure is applied in the working phase of MATLAB and the outcomes have been investigated using existing equalizer structures.","PeriodicalId":420826,"journal":{"name":"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th International Conference on Trends in Electronics and Informatics (ICOEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOEI51242.2021.9453098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple Input and Multiple Outputs (MIMO) in Orthogonal Frequency Division Multiplexing (OFDM) are an amazing strategy to handle multipath interference spread for wideband remote transmission. In this interchange, Long Term Evolution (LTE) is one of the solutions to meet the more critical transmission information rate application. This paper is proposed to diminish the Bit Error Rate (BER) and improve the overall exhibition of the LTE-OFDM model by using differing adjustment procedures under the effect of the Additive White Gaussian Noise (AWGN) channel. LTE passes on more data limit and high-speed accessibility by using more broad channels and more reception apparatus. The balance is performed using multi-equalizers, for instance, Minimum Mean Square Error (MMSE) and Maximum Likelihood Equalizer (MLE). Recreation results demonstrate that the MIMO system has a colossal transmission limit than existing techniques. The multi equalizers have incredible results than singular equalizers for the proposed LTE-OFDM model. The proposed structure is applied in the working phase of MATLAB and the outcomes have been investigated using existing equalizer structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LTE-OFDM系统中提高误码率的放大多均衡器模型
正交频分复用(OFDM)中的多输入多输出(MIMO)是处理宽带远程传输中多径干扰传播的一种有效策略。在这种交换中,长期演进(Long Term Evolution, LTE)是满足更关键的传输信息速率应用的解决方案之一。本文提出在加性高斯白噪声(AWGN)信道的影响下,采用不同的调整方法来降低误码率(BER),提高LTE-OFDM模型的整体性能。LTE通过使用更宽的信道和更多的接收设备来传递更多的数据限制和高速访问。平衡是使用多个均衡器执行的,例如,最小均方误差(MMSE)和最大似然均衡器(MLE)。仿真结果表明,该MIMO系统具有比现有技术更大的传输极限。对于所提出的LTE-OFDM模型,多重均衡器比单一均衡器具有令人难以置信的效果。将所提出的结构应用于MATLAB的工作阶段,并使用现有的均衡器结构对结果进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Analysis of Various Transfer Learning Approaches Skin Cancer Detection Deep Learning Methods for Object Detection in Autonomous Vehicles Load Manage Optimization through Grid and PV Energy Integration System Design of Brain Controlled Robotic Car using Raspberry Pi Feasibility Study of Economic Forecasting Model based on Data Mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1