An Overview of Bayesian Network Applications in Uncertain Domains

Khalid Iqbal, Xu-Cheng Yin, Hongwei Hao, Qazi Mudassar Ilyas, Hazrat Ali
{"title":"An Overview of Bayesian Network Applications in Uncertain Domains","authors":"Khalid Iqbal, Xu-Cheng Yin, Hongwei Hao, Qazi Mudassar Ilyas, Hazrat Ali","doi":"10.7763/IJCTE.2015.V7.996","DOIUrl":null,"url":null,"abstract":" Abstract—Uncertainty is a major barrier in knowledge discovery from complex problem domains. Knowledge discovery in such domains requires qualitative rather than quantitative analysis. Therefore, the quantitative measures can be used to represent uncertainty with the integration of various models. The Bayesian Network (BN) is a widely applied technique for characterization and analysis of uncertainty in real world domains. Thus, the real application of BN can be observed in a broad range of domains such as image processing, decision making, system reliability estimation and PPDM (Privacy Preserving in Data Mining) in association rule mining and medical domain analysis. BN techniques can be used in these domains for prediction and decision support. In this article, a discussion on general BN representation, draw inferences, learning and prediction is followed by applications of BN in some specific domains. Domain specific BN representation, inferences and learning process are also presented. Building upon the knowledge presented, some future research directions are also highlighted.","PeriodicalId":306280,"journal":{"name":"International Journal of Computer Theory and Engineering","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Theory and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7763/IJCTE.2015.V7.996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

 Abstract—Uncertainty is a major barrier in knowledge discovery from complex problem domains. Knowledge discovery in such domains requires qualitative rather than quantitative analysis. Therefore, the quantitative measures can be used to represent uncertainty with the integration of various models. The Bayesian Network (BN) is a widely applied technique for characterization and analysis of uncertainty in real world domains. Thus, the real application of BN can be observed in a broad range of domains such as image processing, decision making, system reliability estimation and PPDM (Privacy Preserving in Data Mining) in association rule mining and medical domain analysis. BN techniques can be used in these domains for prediction and decision support. In this article, a discussion on general BN representation, draw inferences, learning and prediction is followed by applications of BN in some specific domains. Domain specific BN representation, inferences and learning process are also presented. Building upon the knowledge presented, some future research directions are also highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯网络在不确定领域的应用综述
摘要-不确定性是从复杂问题领域中发现知识的主要障碍。这些领域的知识发现需要定性分析而不是定量分析。因此,定量度量可以用来表示不确定性与各种模型的集成。贝叶斯网络(BN)是一种广泛应用于表征和分析现实世界领域不确定性的技术。因此,在图像处理、决策制定、系统可靠性估计以及关联规则挖掘和医疗领域分析中的PPDM (Privacy Preserving in Data Mining,数据挖掘中的隐私保护)等广泛领域中可以看到BN的实际应用。BN技术可以用于这些领域的预测和决策支持。在本文中,讨论了BN的一般表示,得出推论,学习和预测,然后是BN在一些特定领域的应用。还介绍了特定领域的BN表示、推理和学习过程。在此基础上,展望了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Tourist Attractions Recommender System for Bangkok Thailand Gnutella-Based P2P Applications for SDN over TWDM-PON Architecture Capacitated Vehicle Routing Problems: Nearest Neighbour vs. Tabu Search An Overview of Cycle-Accurate, Event-Driven and Full Systems Simulators for Chip-Multiprocessors Analysis of User Experience (UX) on Health-Tracker Mobile Apps
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1