Evolving Skyrmion Racetrack Memory as Energy-Efficient Last-Level Cache Devices

Ya-Hui Yang, Shuo-Han Chen, Yuan-Hao Chang
{"title":"Evolving Skyrmion Racetrack Memory as Energy-Efficient Last-Level Cache Devices","authors":"Ya-Hui Yang, Shuo-Han Chen, Yuan-Hao Chang","doi":"10.1145/3531437.3539709","DOIUrl":null,"url":null,"abstract":"Skyrmion racetrack memory (SK-RM) has been regarded as a promising alternative to replace static random-access memory (SRAM) as a large-size on-chip cache device with high memory density. Different from other nonvolatile random-access memories (NVRAMs), data bits of SK-RM can only be altered or detected at access ports, and shift operations are required to move data bits across access ports along the racetrack. Owing to these special characteristics, word-based mapping and bit-interleaved mapping architectures have been proposed to facilitate reading and writing on SK-RM with different data layouts. Nevertheless, when SK-RM is used as an on-chip cache device, existing mapping architectures lead to the concerns of unpredictable access performance or excessive energy consumption during both data reads and writes. To resolve such concerns, this paper proposes extracting the merits of existing mapping architectures for allowing SK-RM to seamlessly switch its data update policy by considering the write latency requirement of cache accesses. Promising results have been demonstrated through a series of benchmark-driven experiments.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531437.3539709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Skyrmion racetrack memory (SK-RM) has been regarded as a promising alternative to replace static random-access memory (SRAM) as a large-size on-chip cache device with high memory density. Different from other nonvolatile random-access memories (NVRAMs), data bits of SK-RM can only be altered or detected at access ports, and shift operations are required to move data bits across access ports along the racetrack. Owing to these special characteristics, word-based mapping and bit-interleaved mapping architectures have been proposed to facilitate reading and writing on SK-RM with different data layouts. Nevertheless, when SK-RM is used as an on-chip cache device, existing mapping architectures lead to the concerns of unpredictable access performance or excessive energy consumption during both data reads and writes. To resolve such concerns, this paper proposes extracting the merits of existing mapping architectures for allowing SK-RM to seamlessly switch its data update policy by considering the write latency requirement of cache accesses. Promising results have been demonstrated through a series of benchmark-driven experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不断发展的Skyrmion赛道存储器作为节能的最后一级缓存设备
Skyrmion赛道存储器(SK-RM)被认为是一种具有高存储密度的大尺寸片上高速缓存器件,有望取代静态随机存取存储器(SRAM)。与其他非易失性随机存取存储器(nvram)不同,SK-RM的数据位只能在存取端口被改变或检测,并且需要移位操作来沿着赛道在存取端口之间移动数据位。由于这些特殊的特性,基于词的映射和位交错映射架构被提出,以方便不同数据布局的SK-RM上的读写。然而,当SK-RM作为片上缓存设备使用时,现有的映射架构会导致不可预测的访问性能或在读取和写入数据时消耗过多的能量。为了解决这些问题,本文提出通过考虑缓存访问的写延迟要求,提取现有映射架构的优点,以允许SK-RM无缝切换其数据更新策略。通过一系列基准驱动的实验已经证明了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1