Evaluation of Tree Species Classification Methods using Multi-Temporal Satellite Images

A. Saha, S. Sastry, Viral A. Dave, R. Ghosh
{"title":"Evaluation of Tree Species Classification Methods using Multi-Temporal Satellite Images","authors":"A. Saha, S. Sastry, Viral A. Dave, R. Ghosh","doi":"10.1109/lagirs48042.2020.9165673","DOIUrl":null,"url":null,"abstract":"Tree species classification is an important step towards forest monitoring and biodiversity conservation. This research study evaluates several multispectral image classification techniques for tree species over Ahwa village in Dang district, South Gujarat, India. Multispectral images consisting of 4 bands-R, G, B and NIR collected over 4 months was used. Object-based segmentation using mean shift, cluster-based using K-Means and Gaussian Mixture Model (GMM) and pixel-based methods have been analyzed. Additionally, a new method of classification has been described using the Dynamic Time Warping (DTW) algorithm. It outperformed supervised classification techniques with accuracy over 95%. The GMM+DTW model accurately reflected the actual species distribution found in the ground truth.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/lagirs48042.2020.9165673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Tree species classification is an important step towards forest monitoring and biodiversity conservation. This research study evaluates several multispectral image classification techniques for tree species over Ahwa village in Dang district, South Gujarat, India. Multispectral images consisting of 4 bands-R, G, B and NIR collected over 4 months was used. Object-based segmentation using mean shift, cluster-based using K-Means and Gaussian Mixture Model (GMM) and pixel-based methods have been analyzed. Additionally, a new method of classification has been described using the Dynamic Time Warping (DTW) algorithm. It outperformed supervised classification techniques with accuracy over 95%. The GMM+DTW model accurately reflected the actual species distribution found in the ground truth.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多时相卫星影像的树种分类方法评价
树种分类是森林监测和生物多样性保护的重要步骤。本研究评估了印度古吉拉特邦南部Dang地区Ahwa村树种的几种多光谱图像分类技术。使用4个月内收集的r、G、B和近红外4个波段的多光谱图像。分析了基于目标的均值漂移分割、基于K-Means和高斯混合模型(GMM)的聚类分割以及基于像素的方法。此外,还提出了一种新的分类方法——动态时间扭曲(DTW)算法。它优于监督分类技术,准确率超过95%。GMM+DTW模型准确地反映了地面真相中发现的实际物种分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deforestation Polygon Assessment Tool: Providing Comprehensive Information On Deforestation In The Brazilian Cerrado Biome Assessment of rainfall influence on sentinel-1 time series on amazonian tropical forests aiming deforestation detection improvement Spatial Association To Characterize The Climate Teleconnection Patterns In Ecuador Based On Satellite Precipitation Estimates Subsidence in Maceio, Brazil, Characterized by Dinsar and Inverse Modeling Preliminary Analysis For Automatic Tidal Inlets Mapping Using Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1