Study of Uplink Resource Allocation for 5G IoT Services by Using Reinforcement Learning

Yen-Wen Chen Yen-Wen Chen, ChengYu Tsai Yen-Wen Chen
{"title":"Study of Uplink Resource Allocation for 5G IoT Services by Using Reinforcement Learning","authors":"Yen-Wen Chen Yen-Wen Chen, ChengYu Tsai Yen-Wen Chen","doi":"10.53106/160792642023052403013","DOIUrl":null,"url":null,"abstract":"\n In order to support real time IoT services, the ultra Reliable and Low Latency Communications (uRLLC) was proposed in 5G wireless communication network. Different from the grant based access in 4G, the grant free technique is proposed in 5G to reduce the random access delay of uRLLC-required applications. This paper proposes the dedicated resource for exclusive access of individual UE and the shared resource pool for the contention of multiple UEs by adopting the reinforcement learning approach. The objective of this paper is to accomplish the uplink successful rate above 99.9% under certain transmission error probability. The proposed Prediction based Hybrid Resource Allocation (PHRA) scheme allocates the access resource in a heuristic manner by referring to the activity of UEs. The dedicated resource is mainly allocated to the high activity UEs and the initial transmission of UEs with medium activity while the shared resource pool is allocated for the re-transmission of medium activity UEs and low activity UEs by using the reinforcement learning model. The burst traffic model was applied during the exhaustive experiments. And the simulation results show that the proposed scheme achieves higher uplink packet delivery ratio and more effective resource utilization than the other schemes.\n \n","PeriodicalId":442331,"journal":{"name":"網際網路技術學刊","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"網際網路技術學刊","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53106/160792642023052403013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to support real time IoT services, the ultra Reliable and Low Latency Communications (uRLLC) was proposed in 5G wireless communication network. Different from the grant based access in 4G, the grant free technique is proposed in 5G to reduce the random access delay of uRLLC-required applications. This paper proposes the dedicated resource for exclusive access of individual UE and the shared resource pool for the contention of multiple UEs by adopting the reinforcement learning approach. The objective of this paper is to accomplish the uplink successful rate above 99.9% under certain transmission error probability. The proposed Prediction based Hybrid Resource Allocation (PHRA) scheme allocates the access resource in a heuristic manner by referring to the activity of UEs. The dedicated resource is mainly allocated to the high activity UEs and the initial transmission of UEs with medium activity while the shared resource pool is allocated for the re-transmission of medium activity UEs and low activity UEs by using the reinforcement learning model. The burst traffic model was applied during the exhaustive experiments. And the simulation results show that the proposed scheme achieves higher uplink packet delivery ratio and more effective resource utilization than the other schemes.  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的5G物联网业务上行资源分配研究
为了支持实时物联网业务,在5G无线通信网络中提出了超可靠低延迟通信(uRLLC)。与4G中基于授权的接入不同,5G中提出了免授权技术,以减少urllc要求的应用的随机接入延迟。本文采用强化学习方法,提出了单个终端独占访问专用资源和多个终端争用共享资源池。本文的目标是在一定的传输错误概率下实现99.9%以上的上行成功率。提出的基于预测的混合资源分配(PHRA)方案通过参考终端的活动,以启发式方式分配访问资源。专用资源主要分配给高活度ue和中等活度ue的初始传输,共享资源池通过强化学习模型分配给中等活度ue和低活度ue的重传。穷举实验采用突发流量模型。仿真结果表明,与其他方案相比,该方案实现了更高的上行分组投递率和更有效的资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Compact Depth Separable Convolutional Image Filter for Clinical Color Perception Test Hybrid Dynamic Analysis for Android Malware Protected by Anti-Analysis Techniques with DOOLDA An Improved SSD Model for Small Size Work-pieces Recognition in Automatic Production Line A Construction of Knowledge Graph for Semiconductor Industry Chain Based on Lattice-LSTM and PCNN Models Designing a Multi-Criteria Decision-Making Framework to Establish a Value Ranking System for the Quality Evaluation of Long-Term Care Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1