Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2

D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz
{"title":"Stepwise Refinement Of Low Resolution Labels For Earth Observation Data: Part 2","authors":"D. Cerra, N. Merkle, C. Henry, K. Alonso, P. d’Angelo, S. Auer, R. Bahmanyar, X. Yuan, K. Bittner, M. Langheinrich, Guichen Zhang, M. Pato, Jiaojiao Tian, P. Reinartz","doi":"10.1109/IGARSS39084.2020.9547209","DOIUrl":null,"url":null,"abstract":"This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9547209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes the contribution of the DLR team ranking 2nd in Track 2 of the 2020 IEEE GRSS Data Fusion Contest. The semantic classification of multimodal earth observation data proposed is based on the refinement of low-resolution MODIS labels, using as auxiliary training data higher resolution labels available for a validation data set. The classification is initialized with a handcrafted decision tree integrating output from a random forest classifier, and subsequently boosted by detectors for specific classes. The results of the team ranking 3rd in Track 1 of the same contest are reported in a companion paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对地观测数据低分辨率标签的逐步细化:第2部分
本文介绍了在2020年IEEE GRSS数据融合竞赛第二轨道中排名第二的DLR团队的贡献。提出了一种基于低分辨率MODIS标签的多模态地球观测数据语义分类方法,利用验证数据集可用的高分辨率标签作为辅助训练数据。分类是用一个手工制作的决策树进行初始化的,该决策树集成了随机森林分类器的输出,随后由针对特定类的检测器进行增强。在同一场比赛中,在赛道1中排名第3的车队的结果将在相应的论文中报告。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1