Brain Storm Optimization based Association Rule Mining Model for Intelligent Phishing URLs Websites Detection

M. Sathish Kumar, B. Indrani
{"title":"Brain Storm Optimization based Association Rule Mining Model for Intelligent Phishing URLs Websites Detection","authors":"M. Sathish Kumar, B. Indrani","doi":"10.1109/ICCMC48092.2020.ICCMC-000119","DOIUrl":null,"url":null,"abstract":"Phishing is an online unlawful act which takes place when a malicious webpage impersonates as genuine webpage for acquiring confidential details about the user. The phishing attack maintains to acquire a crucial risk factor for web user and annoying threat in the domain of electronic commerce. This study proposes a brain storm optimization (BSO) based association rule mining (ARM) model called BSOARM model to detect of genuine and phishing URLs. Here, BSO algorithm is applied to optimize the rules generated by ARM. The rule attained is deduced to highlight the features which are further common in phishing URLs.To performance of the BSO-ARM model has been tested using a Phishing Dataset. The projected BSO-ARM model has optimized the number of generated rules as 45 and attained maximum accuracy of 86.35%, precision of 81.60%, recall of 86.81% and F-score of 84.13% respectively. These values ensured that the BSO-ARM model has offered better outcomes over the compared methods.","PeriodicalId":130581,"journal":{"name":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC48092.2020.ICCMC-000119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Phishing is an online unlawful act which takes place when a malicious webpage impersonates as genuine webpage for acquiring confidential details about the user. The phishing attack maintains to acquire a crucial risk factor for web user and annoying threat in the domain of electronic commerce. This study proposes a brain storm optimization (BSO) based association rule mining (ARM) model called BSOARM model to detect of genuine and phishing URLs. Here, BSO algorithm is applied to optimize the rules generated by ARM. The rule attained is deduced to highlight the features which are further common in phishing URLs.To performance of the BSO-ARM model has been tested using a Phishing Dataset. The projected BSO-ARM model has optimized the number of generated rules as 45 and attained maximum accuracy of 86.35%, precision of 81.60%, recall of 86.81% and F-score of 84.13% respectively. These values ensured that the BSO-ARM model has offered better outcomes over the compared methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于头脑风暴优化的关联规则挖掘模型用于网络钓鱼url网站智能检测
网络钓鱼是一种网上非法行为,当恶意网页冒充真实网页,以获取用户的机密资料。网络钓鱼攻击是网络用户面临的一个重要风险因素,也是电子商务领域的一大威胁。本研究提出了一种基于脑风暴优化(BSO)的关联规则挖掘(ARM)模型,称为BSOARM模型,用于检测真实和钓鱼url。本文采用BSO算法对ARM生成的规则进行优化。所获得的规则被推断为突出显示在网络钓鱼url中更常见的特征。使用钓鱼数据集对BSO-ARM模型的性能进行了测试。预测的BSO-ARM模型优化生成的规则数量为45条,最大正确率为86.35%,精密度为81.60%,召回率为86.81%,f分数为84.13%。这些值确保了BSO-ARM模型比比较的方法提供了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Time Domain Features of Dysarthria Speech Tourism Recommendation System based on Knowledge Graph Feature Learning IoT systems based on SOA services: Methodologies, Challenges and Future directions Wildfire forecast within the districts of Kerala using Fuzzy and ANFIS A Review Study on the Multiple and Useful Application of Fiber Optic Illumination System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1