Shape Recognition and Retrieval Using String of Symbols

M. Daliri, V. Torre
{"title":"Shape Recognition and Retrieval Using String of Symbols","authors":"M. Daliri, V. Torre","doi":"10.1109/ICMLA.2006.48","DOIUrl":null,"url":null,"abstract":"In this paper we present two algorithms for shape recognition. Both algorithms map the contour of the shape to be recognized into a string of symbols. The first algorithm is based on supervised learning using string kernels as often used for text categorization and classification. The second algorithm is very weakly supervised and is based on the procrustes analysis and on the edit distance used for computing the similarity between strings of symbols. The second algorithm correctly recognizes 98.29% of shapes from the MPEG-7 database, i.e. better than any previous algorithms. The second algorithm is able also to retrieve similar shapes from a database","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this paper we present two algorithms for shape recognition. Both algorithms map the contour of the shape to be recognized into a string of symbols. The first algorithm is based on supervised learning using string kernels as often used for text categorization and classification. The second algorithm is very weakly supervised and is based on the procrustes analysis and on the edit distance used for computing the similarity between strings of symbols. The second algorithm correctly recognizes 98.29% of shapes from the MPEG-7 database, i.e. better than any previous algorithms. The second algorithm is able also to retrieve similar shapes from a database
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于符号串的形状识别与检索
本文提出了两种形状识别算法。这两种算法都将待识别形状的轮廓映射成一串符号。第一种算法基于监督学习,使用字符串核,通常用于文本分类和分类。第二种算法是非常弱监督的,它基于procrustes分析和用于计算符号字符串之间相似性的编辑距离。第二种算法正确识别了MPEG-7数据库中98.29%的形状,优于之前的任何算法。第二种算法也能够从数据库中检索相似的形状
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Efficient Heuristic for Discovering Multiple Ill-Defined Attributes in Datasets Robust Model Selection Using Cross Validation: A Simple Iterative Technique for Developing Robust Gene Signatures in Biomedical Genomics Applications Detecting Web Content Function Using Generalized Hidden Markov Model Naive Bayes Classification Given Probability Estimation Trees A New Machine Learning Technique Based on Straight Line Segments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1