Epileptic Seizure Prediction in EEG Signals using EMD and DWT

Marzhan Bekbalanova, Aliya Zhunis, Zhasdauren Duisebekov
{"title":"Epileptic Seizure Prediction in EEG Signals using EMD and DWT","authors":"Marzhan Bekbalanova, Aliya Zhunis, Zhasdauren Duisebekov","doi":"10.1109/ICECCO48375.2019.9043270","DOIUrl":null,"url":null,"abstract":"In this study, normal (healthy), pre-seizure and seizure states were analyzed using EEG data from BONN database. In this paper, we propose a new method of using SVM, KNN and Decision Tree for classification analysis in order to improve the detection accuracy of seizure. First, due to the presence of significant noise in the EEG signals, for signal pre-processing we performed noise removal. Second, two methods of frequency space transformation were used such as Discrete Wavelet Transform (DWT), separating signal into sub-bands and Empirical Mode Decomposition (EMD) technique to decompose signal into the Intrinsic Mode Functions (IMFs). Before the classification, the statistical moments of the signals in the frequency domain were obtained for feature extraction. Using these features, the performances of Support Vector Machines (SVM), Decision Tree, K-nearest Neighborhood (KNN) classifiers were analyzed. The experiment results show that the most accurate detection of epilepsy was obtained by applying EMD method with classifiers SVM, KNN and Decision Tree, and such algorithm with EMD can achieve accuracy for normal, pre-seizure, and seizure equal to 100%, 100% and 96.67%, respectively.","PeriodicalId":166322,"journal":{"name":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on Electronics, Computer and Computation (ICECCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECCO48375.2019.9043270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this study, normal (healthy), pre-seizure and seizure states were analyzed using EEG data from BONN database. In this paper, we propose a new method of using SVM, KNN and Decision Tree for classification analysis in order to improve the detection accuracy of seizure. First, due to the presence of significant noise in the EEG signals, for signal pre-processing we performed noise removal. Second, two methods of frequency space transformation were used such as Discrete Wavelet Transform (DWT), separating signal into sub-bands and Empirical Mode Decomposition (EMD) technique to decompose signal into the Intrinsic Mode Functions (IMFs). Before the classification, the statistical moments of the signals in the frequency domain were obtained for feature extraction. Using these features, the performances of Support Vector Machines (SVM), Decision Tree, K-nearest Neighborhood (KNN) classifiers were analyzed. The experiment results show that the most accurate detection of epilepsy was obtained by applying EMD method with classifiers SVM, KNN and Decision Tree, and such algorithm with EMD can achieve accuracy for normal, pre-seizure, and seizure equal to 100%, 100% and 96.67%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EMD和DWT的脑电信号癫痫发作预测
本研究使用BONN数据库的脑电图数据分析正常(健康)、癫痫发作前和癫痫发作状态。本文提出了一种利用支持向量机、KNN和决策树进行分类分析的新方法,以提高癫痫的检测精度。首先,由于脑电图信号中存在明显的噪声,在信号预处理中我们进行了去噪处理。其次,采用离散小波变换(DWT)和经验模态分解(EMD)两种频率空间变换方法将信号分解为固有模态函数(IMFs)。在分类之前,先获取信号在频域的统计矩进行特征提取。利用这些特征,分析了支持向量机(SVM)、决策树(Decision Tree)和k近邻(KNN)分类器的性能。实验结果表明,结合SVM、KNN和Decision Tree分类器的EMD方法对癫痫的检测准确率最高,其中EMD算法对正常、癫痫发作前和癫痫发作的检测准确率分别达到100%、100%和96.67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Investigation into Peer-to-Peer Network Security Using Wireshark Greenhouse Monitoring and Control System with an Arduino System Transfer Learning Based Histopathologic Image Classification for Burns Recognition Modelling And Realization of a Compact CPW Transmission Lines Using 3D Mmics Technology in ADS Momentum Review of Advances in Machine Learning Based Protein Secondary Structure Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1