Energy vs. group velocity for elastic waves in homogeneous anisotropic solid media

K. Langenberg, R. Marklein, K. Mayer
{"title":"Energy vs. group velocity for elastic waves in homogeneous anisotropic solid media","authors":"K. Langenberg, R. Marklein, K. Mayer","doi":"10.1109/URSI-EMTS.2010.5637253","DOIUrl":null,"url":null,"abstract":"As for electromagnetic waves the energy velocity for time harmonic elastic waves is defined by the ratio of the (real part) of the elastodynamic complex Poynting vector and their time-averaged elastic energy density. For time harmonic plane waves in homogeneous anisotropic materials an explicit analytic expression can be derived involving the phase propagation vector and the eigenvectors (polarizations) of the respective wave modes (quasi-pressure, quasi-shear). Numerical evaluation yields plane wave energy velocity diagrams for these wave modes that depend on the direction of the phase vector. On the other hand, for impulsive elastic wave packets a group velocity can be defined under certain assumptions as the gradient in phase space of the dispersion relation. As will be shown in the paper, if definable, the group velocity can be alternatively computed by the expression for the energy velocity. This is particularly interesting because frequency band-limited impulsive elastic waves emanating from point sources (band-limited time domain Green functions, Huygens elementary elastic wave packets) exhibit a spatial structure identical to plane wave energy velocity diagrams giving rise to their calculation without the explicit knowledge of the pertinent Green functions. Therefore, time harmonic plane waves serve as a computational tool for impulsive point source excited waves that has consequences for elastic wave diffraction tomographic imaging.","PeriodicalId":404116,"journal":{"name":"2010 URSI International Symposium on Electromagnetic Theory","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 URSI International Symposium on Electromagnetic Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2010.5637253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

As for electromagnetic waves the energy velocity for time harmonic elastic waves is defined by the ratio of the (real part) of the elastodynamic complex Poynting vector and their time-averaged elastic energy density. For time harmonic plane waves in homogeneous anisotropic materials an explicit analytic expression can be derived involving the phase propagation vector and the eigenvectors (polarizations) of the respective wave modes (quasi-pressure, quasi-shear). Numerical evaluation yields plane wave energy velocity diagrams for these wave modes that depend on the direction of the phase vector. On the other hand, for impulsive elastic wave packets a group velocity can be defined under certain assumptions as the gradient in phase space of the dispersion relation. As will be shown in the paper, if definable, the group velocity can be alternatively computed by the expression for the energy velocity. This is particularly interesting because frequency band-limited impulsive elastic waves emanating from point sources (band-limited time domain Green functions, Huygens elementary elastic wave packets) exhibit a spatial structure identical to plane wave energy velocity diagrams giving rise to their calculation without the explicit knowledge of the pertinent Green functions. Therefore, time harmonic plane waves serve as a computational tool for impulsive point source excited waves that has consequences for elastic wave diffraction tomographic imaging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
均匀各向异性固体介质中弹性波的能量与群速度
对于电磁波,时间谐波弹性波的能量速度由弹性动力复波印亭矢量(实部)与时间平均弹性能量密度之比来定义。对于均匀各向异性材料中的时谐平面波,可以推导出包含相传播矢量和各自波模(准压力、准剪切)的特征矢量(偏振)的显式解析表达式。数值计算得出了依赖于相位矢量方向的这些波模式的平面波能量速度图。另一方面,对于脉冲弹性波包,在一定的假设下,群速度可以定义为色散关系的相空间梯度。如本文所示,如果可定义,群速度可由能量速度表达式替代计算。这是特别有趣的,因为从点源发出的频带限制脉冲弹性波(频带限制时域格林函数,惠更斯基本弹性波包)表现出与平面波能量速度图相同的空间结构,从而在不明确了解相关格林函数的情况下进行计算。因此,时间谐波平面波作为脉冲点源激发波的计算工具,对弹性波衍射层析成像有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Wavelet analysis for an electromagnetic field The effect of gap size on dipole impedance using the induced EMF method Continuous one-sided beam scanning through broadside from backfire to forward fire by efficient surface-wave excitation RUFD: A general-purpose, non-iterative and matrix-free CEM algorithm for solving electromagnetic scattering and radiation problems in the frequency domain A crustal movement observation system using quasi-zenith satellites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1