Data Identification and Process Monitoring for Reproducible Earth Observation Research

Bernhard Gößwein, Tomasz Miksa, A. Rauber, W. Wagner
{"title":"Data Identification and Process Monitoring for Reproducible Earth Observation Research","authors":"Bernhard Gößwein, Tomasz Miksa, A. Rauber, W. Wagner","doi":"10.1109/eScience.2019.00011","DOIUrl":null,"url":null,"abstract":"Earth observation researchers use specialised computing services for satellite image processing offered by various data backends. The source of data is often the same, for example Sentinel-2 satellites operated by Copernicus, but the way how data is pre-processed, corrected, updated, and later analysed may differ among the backends. Backends often lack mechanisms for data versioning, for example, data corrections are not tracked. Furthermore, an evolving software stack used for data processing remains a black box to researchers. Researchers have no means to identify why executions of the same code deliver different results. This hinders reproducibility of earth observation experiments. In this paper, we present how infrastructure of existing earth observation data backends can be modified to support reproducibility. The proposed extensions are based on recommendations of the Research Data Alliance regarding data identification and the VFramework for automated process provenance documentation. We implemented these extensions at the Earth Observation Data Centre, a partner in the openEO consortium. We evaluated the solution on a variety of usage scenarios, providing also performance and storage measures to evaluate the impact of the modifications. The results indicate reproducibility can be supported with minimal performance and storage overhead.","PeriodicalId":142614,"journal":{"name":"2019 15th International Conference on eScience (eScience)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th International Conference on eScience (eScience)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2019.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Earth observation researchers use specialised computing services for satellite image processing offered by various data backends. The source of data is often the same, for example Sentinel-2 satellites operated by Copernicus, but the way how data is pre-processed, corrected, updated, and later analysed may differ among the backends. Backends often lack mechanisms for data versioning, for example, data corrections are not tracked. Furthermore, an evolving software stack used for data processing remains a black box to researchers. Researchers have no means to identify why executions of the same code deliver different results. This hinders reproducibility of earth observation experiments. In this paper, we present how infrastructure of existing earth observation data backends can be modified to support reproducibility. The proposed extensions are based on recommendations of the Research Data Alliance regarding data identification and the VFramework for automated process provenance documentation. We implemented these extensions at the Earth Observation Data Centre, a partner in the openEO consortium. We evaluated the solution on a variety of usage scenarios, providing also performance and storage measures to evaluate the impact of the modifications. The results indicate reproducibility can be supported with minimal performance and storage overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可重复地球观测研究的数据识别和过程监控
地球观测研究人员使用各种数据后端提供的专门计算服务进行卫星图像处理。数据的来源通常是相同的,例如哥白尼操作的哨兵2号卫星,但是数据的预处理、校正、更新和随后分析的方式可能在后端不同。后端通常缺乏数据版本控制机制,例如,不跟踪数据更正。此外,用于数据处理的不断发展的软件堆栈对研究人员来说仍然是一个黑盒子。研究人员无法确定为什么执行相同的代码会产生不同的结果。这阻碍了对地观测实验的可重复性。在本文中,我们介绍了如何修改现有地球观测数据后端的基础设施以支持再现性。提议的扩展是基于研究数据联盟关于数据识别和VFramework自动化过程来源文档的建议。我们在地球观测数据中心实施了这些扩展,该中心是openEO联盟的一个合作伙伴。我们在各种使用场景中评估了该解决方案,还提供了性能和存储度量来评估修改的影响。结果表明,可以用最小的性能和存储开销来支持再现性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accelerating Scientific Discovery with SCAIGATE Science Gateway Contextual Linking between Workflow Provenance and System Performance Logs BBBlockchain: Blockchain-Based Participation in Urban Development Streaming Workflows on Edge Devices to Process Sensor Data on a Smart Manufacturing Platform Serverless Science for Simple, Scalable, and Shareable Scholarship
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1