A DRL Based Distributed Formation Control Scheme with Stream-Based Collision Avoidance

Xinyou Qiu, Xiaoxiang Li, Jian Wang, Yu Wang, Yuan Shen
{"title":"A DRL Based Distributed Formation Control Scheme with Stream-Based Collision Avoidance","authors":"Xinyou Qiu, Xiaoxiang Li, Jian Wang, Yu Wang, Yuan Shen","doi":"10.1109/ICAS49788.2021.9551123","DOIUrl":null,"url":null,"abstract":"Formation and collision avoidance abilities are essential for multi-agent systems. Conventional methods usually require a central controller and global information to achieve collaboration, which is impractical in an unknown environment. In this paper, we propose a deep reinforcement learning (DRL) based distributed formation control scheme for autonomous vehicles. A modified stream-based obstacle avoidance method is applied to smoothen the optimal trajectory, and onboard sensors such as Lidar and antenna arrays are used to obtain local relative distance and angle information. The proposed scheme obtains a scalable distributed control policy which jointly optimizes formation tracking error and average collision rate with local observations. Simulation results demonstrate that our method outperforms two other state-of-the-art algorithms on maintaining formation and collision avoidance.","PeriodicalId":287105,"journal":{"name":"2021 IEEE International Conference on Autonomous Systems (ICAS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Autonomous Systems (ICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAS49788.2021.9551123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Formation and collision avoidance abilities are essential for multi-agent systems. Conventional methods usually require a central controller and global information to achieve collaboration, which is impractical in an unknown environment. In this paper, we propose a deep reinforcement learning (DRL) based distributed formation control scheme for autonomous vehicles. A modified stream-based obstacle avoidance method is applied to smoothen the optimal trajectory, and onboard sensors such as Lidar and antenna arrays are used to obtain local relative distance and angle information. The proposed scheme obtains a scalable distributed control policy which jointly optimizes formation tracking error and average collision rate with local observations. Simulation results demonstrate that our method outperforms two other state-of-the-art algorithms on maintaining formation and collision avoidance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DRL的分布式编队控制流避碰方案
编队和避碰能力是多智能体系统的关键。传统的方法通常需要一个中央控制器和全局信息来实现协作,这在未知环境中是不切实际的。在本文中,我们提出了一种基于深度强化学习(DRL)的自动驾驶车辆分布式编队控制方案。采用改进的基于流的避障方法对最优轨迹进行平滑处理,利用机载传感器如激光雷达和天线阵列获取局部相对距离和角度信息。该方案获得了一种可扩展的分布式控制策略,该策略可与局部观测值共同优化编队跟踪误差和平均碰撞率。仿真结果表明,该方法在保持队形和避免碰撞方面优于其他两种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Automated Search for Underwater Threats Using Multistatic Sensor Fields by Incorporating Unconfirmed Track Information Matching Models for Crowd-Shipping Considering Shipper’s Acceptance Uncertainty Observational Learning: Imitation Through an Adaptive Probabilistic Approach Simultaneous Calibration of Positions, Orientations, and Time Offsets, Among Multiple Microphone Arrays Modified crop health monitoring and pesticide spraying system using NDVI and Semantic Segmentation: An AGROCOPTER based approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1