Precise Estimation of Local Probabilities for Bayesian Attack Graph Analysis

Arnab Paul Joy, Mosarrat Jahan, U. Kabir, S. Mahato
{"title":"Precise Estimation of Local Probabilities for Bayesian Attack Graph Analysis","authors":"Arnab Paul Joy, Mosarrat Jahan, U. Kabir, S. Mahato","doi":"10.1109/iemcon53756.2021.9623254","DOIUrl":null,"url":null,"abstract":"A Bayesian Attack Graph (BAG) is an essential model for red teams in cyber security to detect the most vulnerable components of a system. It is a probabilistic graphical model in which each node is initially assigned a probability value called local probability. For realistic and better analysis of BAGs, it is essential to evaluate local probabilities precisely. For that purpose, in this paper, we use the Common Vulnerability Scoring System (CVSS) to estimate temporal and environmental scores. We further consider various factors reflecting attackers' characteristics in BAG analysis. In this respect, we inaugurated a new environmental variable named “host type” that influences an attacker's motivation and abolishes the need for earlier network architecture knowledge to determine the factor values.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A Bayesian Attack Graph (BAG) is an essential model for red teams in cyber security to detect the most vulnerable components of a system. It is a probabilistic graphical model in which each node is initially assigned a probability value called local probability. For realistic and better analysis of BAGs, it is essential to evaluate local probabilities precisely. For that purpose, in this paper, we use the Common Vulnerability Scoring System (CVSS) to estimate temporal and environmental scores. We further consider various factors reflecting attackers' characteristics in BAG analysis. In this respect, we inaugurated a new environmental variable named “host type” that influences an attacker's motivation and abolishes the need for earlier network architecture knowledge to determine the factor values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯攻击图分析中局部概率的精确估计
贝叶斯攻击图(BAG)是网络安全红队检测系统中最脆弱组件的基本模型。它是一种概率图形模型,其中每个节点最初被分配一个称为局部概率的概率值。为了更真实和更好地分析bag,精确地评估局部概率是至关重要的。为此,在本文中,我们使用通用漏洞评分系统(CVSS)来估计时间和环境分数。在BAG分析中,我们进一步考虑了反映攻击者特征的各种因素。在这方面,我们启用了一个名为“主机类型”的新环境变量,它影响攻击者的动机,并消除了对早期网络体系结构知识来确定因素值的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximization of the User Association of a Low-Power Tier Deploying Biased User Association Scheme in 5G Multi-Tier Heterogeneous Network A Deep Reinforcement Learning: Location-based Resource Allocation for Congested C-V2X Scenario A Deep Learning Approach to Predict Chronic Kidney Disease in Human Evaluation of a bio-socially inspired secure DSA scheme using testbed-calibrated hybrid simulations Siamese Network based Pulse and Signal Attribute Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1