Noor Shaker, Miguel Nicolau, Georgios N. Yannakakis, J. Togelius, M. O’Neill
{"title":"Evolving levels for Super Mario Bros using grammatical evolution","authors":"Noor Shaker, Miguel Nicolau, Georgios N. Yannakakis, J. Togelius, M. O’Neill","doi":"10.1109/CIG.2012.6374170","DOIUrl":null,"url":null,"abstract":"This paper presents the use of design grammars to evolve playable 2D platform levels through grammatical evolution (GE). Representing levels using design grammars allows simple encoding of important level design constraints, and allows remarkably compact descriptions of large spaces of levels. The expressive range of the GE-based level generator is analyzed and quantitatively compared to other feature-based and the original level generators by means of aesthetic and similarity based measures. The analysis reveals strengths and shortcomings of each generator and provides a general framework for comparing content generated by different generators. The approach presented can be used as an assistive tool by game designers to compare and analyze generators' capabilities within the same game genre.","PeriodicalId":288052,"journal":{"name":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"115","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2012.6374170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 115
Abstract
This paper presents the use of design grammars to evolve playable 2D platform levels through grammatical evolution (GE). Representing levels using design grammars allows simple encoding of important level design constraints, and allows remarkably compact descriptions of large spaces of levels. The expressive range of the GE-based level generator is analyzed and quantitatively compared to other feature-based and the original level generators by means of aesthetic and similarity based measures. The analysis reveals strengths and shortcomings of each generator and provides a general framework for comparing content generated by different generators. The approach presented can be used as an assistive tool by game designers to compare and analyze generators' capabilities within the same game genre.