Demand Estimation and Forecasting Using Neuroeconomic Models of Consumer Choice

Nan Chen, J. Clithero, Ming Hsu
{"title":"Demand Estimation and Forecasting Using Neuroeconomic Models of Consumer Choice","authors":"Nan Chen, J. Clithero, Ming Hsu","doi":"10.2139/ssrn.3397895","DOIUrl":null,"url":null,"abstract":"A foundational problem in marketing and economics involves accurately predicting purchase decisions at both individual and aggregate levels. Building on recent advances in neuroeconomic models of decision making, we investigate the possibility of improving upon the prediction accuracy of popular existing approaches based on the multinomial logit model (MNL). Specifically, using a neuroeconomic model that incorporates response times in addition to choice data, we compare the out-of-sample prediction accuracy of both approaches using a series of consumer choice experiments. We show that our neuroeconomic model robustly outperformed the standard MNL approach in providing accurate forecasts on diverse measures including revenue, market share, and market cannibalization. Finally, we develop a generalizable framework to assess the relative strengths and weaknesses of our neuroeconomic approach compared to current modeling techniques.","PeriodicalId":365298,"journal":{"name":"CSN: Business (Topic)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSN: Business (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3397895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A foundational problem in marketing and economics involves accurately predicting purchase decisions at both individual and aggregate levels. Building on recent advances in neuroeconomic models of decision making, we investigate the possibility of improving upon the prediction accuracy of popular existing approaches based on the multinomial logit model (MNL). Specifically, using a neuroeconomic model that incorporates response times in addition to choice data, we compare the out-of-sample prediction accuracy of both approaches using a series of consumer choice experiments. We show that our neuroeconomic model robustly outperformed the standard MNL approach in providing accurate forecasts on diverse measures including revenue, market share, and market cannibalization. Finally, we develop a generalizable framework to assess the relative strengths and weaknesses of our neuroeconomic approach compared to current modeling techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用消费者选择的神经经济学模型进行需求估计和预测
市场营销和经济学中的一个基本问题涉及到在个人和总体水平上准确预测购买决策。基于决策神经经济学模型的最新进展,我们研究了基于多项逻辑模型(MNL)的现有流行方法提高预测精度的可能性。具体来说,我们使用了一个神经经济学模型,除了选择数据外,还结合了响应时间,通过一系列消费者选择实验,我们比较了两种方法的样本外预测精度。我们表明,我们的神经经济模型在提供包括收入、市场份额和市场蚕食在内的各种指标的准确预测方面,明显优于标准的MNL方法。最后,我们开发了一个可推广的框架来评估与当前建模技术相比,我们的神经经济学方法的相对优势和劣势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Temporal Reframing Elicitations Can Improve the Emergency Savings Intentions of Gig Workers Pharmaceutical Lottery Stocks: Investors’ Reaction to FDA Announcements Review Studies: Lifestyle and Social Class in Consumer Behavior for Services Industries Market Distraction and Near-Zero Volatility Persistence Do Preferences for Private Labels Respond to Supermarket Loyalty Programs?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1