Towards the Representation of Cross-Domain Quality Knowledge for Efficient Data Analytics

S. Kropatschek, Thorsten Steuer, Elmar Kiesling, Kristof Meixner, Thom W. Frühwirth, Patrik Sommer, Daniel Schachinger, S. Biffl
{"title":"Towards the Representation of Cross-Domain Quality Knowledge for Efficient Data Analytics","authors":"S. Kropatschek, Thorsten Steuer, Elmar Kiesling, Kristof Meixner, Thom W. Frühwirth, Patrik Sommer, Daniel Schachinger, S. Biffl","doi":"10.1109/ETFA45728.2021.9613406","DOIUrl":null,"url":null,"abstract":"In Cyber-physical Production System (CPPS) engineering, data analysts and domain experts collaborate to identify likely causes for quality issues. Industry 4.0 production assets can provide a wealth of data for analysis, making it difficult to identify the most relevant data. Because data analysts typically do not posses detailed knowledge of the production process, a key challenge is to discover potential causes that impact product quality with various experts, as knowledge about production processes is typically distributed across various domains. To address this, we highlight the need for cross-domain modelling and outline an approach for effective and efficient quality analysis. Specifically, we introduce the Quality Dependency Graph (QDG) to represent cross-domain knowledge dependencies for efficiently prioritizing data sources. We evaluate the QDG in a feasibility study based on a real-world use case in the automotive industry.","PeriodicalId":312498,"journal":{"name":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA45728.2021.9613406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In Cyber-physical Production System (CPPS) engineering, data analysts and domain experts collaborate to identify likely causes for quality issues. Industry 4.0 production assets can provide a wealth of data for analysis, making it difficult to identify the most relevant data. Because data analysts typically do not posses detailed knowledge of the production process, a key challenge is to discover potential causes that impact product quality with various experts, as knowledge about production processes is typically distributed across various domains. To address this, we highlight the need for cross-domain modelling and outline an approach for effective and efficient quality analysis. Specifically, we introduce the Quality Dependency Graph (QDG) to represent cross-domain knowledge dependencies for efficiently prioritizing data sources. We evaluate the QDG in a feasibility study based on a real-world use case in the automotive industry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向高效数据分析的跨领域质量知识表示
在信息物理生产系统(CPPS)工程中,数据分析师和领域专家合作确定质量问题的可能原因。工业4.0生产资产可以为分析提供丰富的数据,这使得识别最相关的数据变得困难。由于数据分析师通常不具备生产过程的详细知识,因此一个关键的挑战是与不同的专家一起发现影响产品质量的潜在原因,因为有关生产过程的知识通常分布在不同的领域。为了解决这个问题,我们强调了跨领域建模的必要性,并概述了一种有效和高效的质量分析方法。具体来说,我们引入了质量依赖图(QDG)来表示跨领域的知识依赖关系,以便有效地对数据源进行优先级排序。我们在基于汽车行业实际用例的可行性研究中评估QDG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Optimal Order Assignment Algorithm for Single-Rate Time-Driven AFAP Cyclic Executives Demonstrating Reinforcement Learning for Maintenance Scheduling in a Production Environment Investigation in IoT and 5G architectures for deployment of Artificial Intelligence into urban mobility and production Towards a Robust MMIO-based Synchronized Clock for Virtualized Edge Computing Devices LETRA: Mapping Legacy Ethernet-Based Traffic into TSN Traffic Classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1