Petra Novotna, Tomáš Vičar, Jakub Hejc, M. Ronzhina
{"title":"Deep-Learning Premature Contraction Localization Using Gaussian Based Predicted Data","authors":"Petra Novotna, Tomáš Vičar, Jakub Hejc, M. Ronzhina","doi":"10.23919/cinc53138.2021.9662903","DOIUrl":null,"url":null,"abstract":"Detection of cardiac arrhythmias is still an ongoing challenge. Here we focus on premature ventricular contraction (PVC) and premature atrial contraction (PAC) and introduce a deep-learning-based method for PVC/PAC localization in ECG. Our method is based on involving the time series with non-zero values corresponding to the ground truth PVC/PAC positions into the training process. To improve the efficiency of deep model training, the transition between the non-zero and zero areas in the train output time series was smoothed by introducing a Gaussian function. When applied to the new ECGs, the output signal (time series including Gaussians) is processed by a robust peak detector with Bayesian optimization of threshold, minimal distance and peak prominence. Positions of the detected peaks correspond to the desired PVC/PAC positions. The proposed method was evaluated on China Physiological Signal Challenge 2018 (CPSC2018) using own-created ground truth positions of PVC/PAC. The proposed method reached F1 score 0.923 and 0.688 for PAC and PVC, respectively, which is better than our previous results obtained via multiple instance learning-based method.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Detection of cardiac arrhythmias is still an ongoing challenge. Here we focus on premature ventricular contraction (PVC) and premature atrial contraction (PAC) and introduce a deep-learning-based method for PVC/PAC localization in ECG. Our method is based on involving the time series with non-zero values corresponding to the ground truth PVC/PAC positions into the training process. To improve the efficiency of deep model training, the transition between the non-zero and zero areas in the train output time series was smoothed by introducing a Gaussian function. When applied to the new ECGs, the output signal (time series including Gaussians) is processed by a robust peak detector with Bayesian optimization of threshold, minimal distance and peak prominence. Positions of the detected peaks correspond to the desired PVC/PAC positions. The proposed method was evaluated on China Physiological Signal Challenge 2018 (CPSC2018) using own-created ground truth positions of PVC/PAC. The proposed method reached F1 score 0.923 and 0.688 for PAC and PVC, respectively, which is better than our previous results obtained via multiple instance learning-based method.