A Distributed PCM Clustering Algorithm Based on Spark

Yong Zhang, Hao Liu, Tianzhen Chen, Di Tang
{"title":"A Distributed PCM Clustering Algorithm Based on Spark","authors":"Yong Zhang, Hao Liu, Tianzhen Chen, Di Tang","doi":"10.1145/3318299.3318315","DOIUrl":null,"url":null,"abstract":"With the large-scale growth of data, traditional single-machine data processing methods are difficult to deal with massive data, especially iterative clustering algorithms that require frequent reading and writing operations. On the basis of Spark framework, this paper proposes a distributed possibilistic c-means algorithm based on memory computing, called Spark-PCM. The proposed method improves the related processing of distributed matrix operation and is implemented on the Spark platform. Experimental results show that the proposed Spark-PCM algorithm runs in a linear relationship with the number of nodes and has a good scalability, which indicates that it has higher scalability and adaptability to large-scale data.","PeriodicalId":164987,"journal":{"name":"International Conference on Machine Learning and Computing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318299.3318315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the large-scale growth of data, traditional single-machine data processing methods are difficult to deal with massive data, especially iterative clustering algorithms that require frequent reading and writing operations. On the basis of Spark framework, this paper proposes a distributed possibilistic c-means algorithm based on memory computing, called Spark-PCM. The proposed method improves the related processing of distributed matrix operation and is implemented on the Spark platform. Experimental results show that the proposed Spark-PCM algorithm runs in a linear relationship with the number of nodes and has a good scalability, which indicates that it has higher scalability and adaptability to large-scale data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Spark的分布式PCM聚类算法
随着数据的大规模增长,传统的单机数据处理方法难以处理海量数据,尤其是需要频繁读写操作的迭代聚类算法。本文在Spark框架的基础上,提出了一种基于内存计算的分布式可能性c均值算法,称为Spark- pcm。该方法改进了分布式矩阵运算的相关处理,并在Spark平台上实现。实验结果表明,提出的Spark-PCM算法与节点数呈线性关系,具有良好的可扩展性,表明该算法具有较高的可扩展性和对大规模数据的适应性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Particle Competition for Multilayer Network Community Detection Power Load Forecasting Using a Refined LSTM Research on the Application of Big Data Management in Enterprise Management Decision-making and Execution Literature Review A Flexible Approach for Human Activity Recognition Based on Broad Learning System Decentralized Adaptive Latency-Aware Cloud-Edge-Dew Architecture for Unreliable Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1