Joint Internal Multi-Interest Exploration and External Domain Alignment for Cross Domain Sequential Recommendation

Weiming Liu, Xiaolin Zheng, Chaochao Chen, Jiajie Su, Xinting Liao, Mengling Hu, Yanchao Tan
{"title":"Joint Internal Multi-Interest Exploration and External Domain Alignment for Cross Domain Sequential Recommendation","authors":"Weiming Liu, Xiaolin Zheng, Chaochao Chen, Jiajie Su, Xinting Liao, Mengling Hu, Yanchao Tan","doi":"10.1145/3543507.3583366","DOIUrl":null,"url":null,"abstract":"Sequential Cross-Domain Recommendation (CDR) has been popularly studied to utilize different domain knowledge and users’ historical behaviors for the next-item prediction. In this paper, we focus on the cross-domain sequential recommendation problem. This commonly exist problem is rather challenging from two perspectives, i.e., the implicit user historical rating sequences are difficult in modeling and the users/items on different domains are mostly non-overlapped. Most previous sequential CDR approaches cannot solve the cross-domain sequential recommendation problem well, since (1) they cannot sufficiently depict the users’ actual preferences, (2) they cannot leverage and transfer useful knowledge across domains. To tackle the above issues, we propose joint Internal multi-interest exploration and External domain alignment for cross domain Sequential Recommendation model (IESRec). IESRec includes two main modules, i.e., internal multi-interest exploration module and external domain alignment module. To reflect the users’ diverse characteristics with multi-interests evolution, we first propose internal temporal optimal transport method in the internal multi-interest exploration module. We further propose external alignment optimal transport method in the external domain alignment module to reduce domain discrepancy for the item embeddings. Our empirical studies on Amazon datasets demonstrate that IESRec significantly outperforms the state-of-the-art models.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Sequential Cross-Domain Recommendation (CDR) has been popularly studied to utilize different domain knowledge and users’ historical behaviors for the next-item prediction. In this paper, we focus on the cross-domain sequential recommendation problem. This commonly exist problem is rather challenging from two perspectives, i.e., the implicit user historical rating sequences are difficult in modeling and the users/items on different domains are mostly non-overlapped. Most previous sequential CDR approaches cannot solve the cross-domain sequential recommendation problem well, since (1) they cannot sufficiently depict the users’ actual preferences, (2) they cannot leverage and transfer useful knowledge across domains. To tackle the above issues, we propose joint Internal multi-interest exploration and External domain alignment for cross domain Sequential Recommendation model (IESRec). IESRec includes two main modules, i.e., internal multi-interest exploration module and external domain alignment module. To reflect the users’ diverse characteristics with multi-interests evolution, we first propose internal temporal optimal transport method in the internal multi-interest exploration module. We further propose external alignment optimal transport method in the external domain alignment module to reduce domain discrepancy for the item embeddings. Our empirical studies on Amazon datasets demonstrate that IESRec significantly outperforms the state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
跨领域顺序推荐的内部多兴趣探索与外部领域对齐
序贯跨领域推荐(CDR)是一种利用不同领域知识和用户历史行为进行下一项预测的方法。本文主要研究跨域顺序推荐问题。这一普遍存在的问题从两个方面具有挑战性,即隐式用户历史评级序列难以建模和不同域上的用户/项目大多不重叠。大多数以前的顺序CDR方法不能很好地解决跨领域的顺序推荐问题,因为(1)它们不能充分描述用户的实际偏好,(2)它们不能跨领域利用和转移有用的知识。为了解决上述问题,我们提出了跨领域顺序推荐模型(IESRec)的内部多兴趣探索和外部领域对齐联合方法。IESRec包括两个主要模块,即内部多兴趣探索模块和外部域对齐模块。为了反映用户多利益演化的多样性特征,我们首先在内部多利益探索模块中提出了内部时间最优传输方法。我们进一步在外部域对齐模块中提出了外部对齐最优传输方法,以减少项目嵌入的域差异。我们对亚马逊数据集的实证研究表明,IESRec显著优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CurvDrop: A Ricci Curvature Based Approach to Prevent Graph Neural Networks from Over-Smoothing and Over-Squashing Learning to Simulate Crowd Trajectories with Graph Networks Word Sense Disambiguation by Refining Target Word Embedding Curriculum Graph Poisoning Optimizing Guided Traversal for Fast Learned Sparse Retrieval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1