The use of Triple Exponential Smoothing Method (Winter) in forecasting passenger of PT Kereta Api Indonesia with optimization alpha, beta, and gamma parameters

Wawan Setiawan, Enjun Juniati, I. Farida
{"title":"The use of Triple Exponential Smoothing Method (Winter) in forecasting passenger of PT Kereta Api Indonesia with optimization alpha, beta, and gamma parameters","authors":"Wawan Setiawan, Enjun Juniati, I. Farida","doi":"10.1109/ICSITECH.2016.7852633","DOIUrl":null,"url":null,"abstract":"This research aims to implement Triple Exponential Smoothing Methods (Winter) with the control parameters of alpha, beta, and gamma through techniques initialization data history with the smallest value of Mean Absolute Percentage Error (MAPE). The time series data used from Kereta Api Indonesia Ltd. (PT KAI) Bandung Indonesia between 2006 and 2014 for the Argo Wilis, Turangga, Mutiara Selatan, Pasundan, and Kahuripan trains. The results of this study indicate that for the data fifth train fleet has a pattern of non-stationary fluctuating trend. Initialization of the most well done to the data is one year to produce optimal MAPE. The results of forecasting with Triple Exponential Smoothing Methods (Winter) generally have good accuracy, namely Argo Wilis is 86.60, Turangga is 70.13, Mutiara Selatan is 85.16, Pasundan 90.87, and Kahuripan 88.47 percent. In general, the accuracy of forecasting that is used quite well.","PeriodicalId":447090,"journal":{"name":"2016 2nd International Conference on Science in Information Technology (ICSITech)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2016.7852633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This research aims to implement Triple Exponential Smoothing Methods (Winter) with the control parameters of alpha, beta, and gamma through techniques initialization data history with the smallest value of Mean Absolute Percentage Error (MAPE). The time series data used from Kereta Api Indonesia Ltd. (PT KAI) Bandung Indonesia between 2006 and 2014 for the Argo Wilis, Turangga, Mutiara Selatan, Pasundan, and Kahuripan trains. The results of this study indicate that for the data fifth train fleet has a pattern of non-stationary fluctuating trend. Initialization of the most well done to the data is one year to produce optimal MAPE. The results of forecasting with Triple Exponential Smoothing Methods (Winter) generally have good accuracy, namely Argo Wilis is 86.60, Turangga is 70.13, Mutiara Selatan is 85.16, Pasundan 90.87, and Kahuripan 88.47 percent. In general, the accuracy of forecasting that is used quite well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用三指数平滑法(冬季)优化alpha、beta和gamma参数预测印尼Kereta Api的客运量
本研究旨在通过以平均绝对百分比误差(Mean Absolute Percentage Error, MAPE)最小值初始化数据历史,实现以alpha、beta和gamma为控制参数的三重指数平滑方法(Winter)。2006年至2014年期间,印尼万隆市Kereta Api Ltd. (PT KAI)使用了Argo Wilis、Turangga、Mutiara Selatan、Pasundan和Kahuripan列车的时间序列数据。研究结果表明,从数据上看,第五列车组具有非平稳波动趋势。初始化做得最好的数据是一年产生最优的MAPE。三指数平滑法(冬季)预测结果普遍具有较好的准确性,Argo Wilis为86.60,Turangga为70.13,Mutiara Selatan为85.16,Pasundan为90.87,Kahuripan为88.47%。一般来说,预测的准确性使用得相当好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Web based fuzzy expert system for lung cancer diagnosis An empirical evaluation of ERP values using RBV approach in Indonesia A survey on data-driven approaches in educational games Enhancing e-learning system to support learning style based personalization Certificate policy and Certification Practice Statement for root CA Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1